Graph Database

COMPQ@312_23T2

Drawbacks of Relational Databases

User
. . UserlD | User | Address Phone Email Alternate
« Schema are inflexible 1 Alice |123Foo St | 12345678 | alice@example.org | alice@neod;.org
o Missing Va|ueS 2 Bob | 456 Bar Ave. bob@example.org
« Business Requirements change quickly 99 | Zach |99 South St. zach@example.org
» Inefficient T
» Consider the E-=Commerce example Order Lineitem
.) OrderD | UserlD | € OrderlD | ProductlD | Quantity
« What items did a customer buy? > I TR >
* Which customers bought this product? o L L S 1
« A basic query for recommendation; Which ~ [sss [os s |76 |1
customers buying this product also bought l
that product? Product
« NoSQL database faces the similar issue "D Sesapeen =g
321 strawberry ice cream | freezer
765 potatoes
987 dned spaghetti

UNSW COMP9312_23T2 2

Drawbacks of Relational Databases (Cont.)

- OO FWDNE O
WoOoIkFkrEFENO

UNSW COMP9312_23T2

What is a Graph Database?

= A database consists of entities and their
relationships

= An entity is modelled as a node (with
arbitrary number of attributes).

= Arelationship is modelled as an edge
(possibly with labels or weights) 5

= No background of graph theory is needed
to query a graph database

= More intuitive to understand than an
relational database management
systems (RDBMS)

4 UNSW COMP9312_23T2

Why we care about Graph Database~

« Performance

O Traditional Joins are inefficient
O Billion-scale data are common, e.g., Facebook social network, Google web graph
* Flexibility
O Real-world entities may not have a fixed schema. It is not feasible to design 1000 attributes for a
table.

O Relationships among entities can be arbitrary. It is not feasible to use 1000 tables to model 1000

types of relationships.
« Agility
O Business requirements changes over time

0 Today’'s development practices are agile, test-driven

S UNSW COMP9312_23T2

How a graph database works

 Graph Storage
O Usually use the native graph structure, e.g., adjacency lists.
O Efficient and easy to develop graph algorithms.

« Graph Processing Engine

O Algorithms and queries supported based on the graph storage

O Native graph processing is more efficient

and load Graph Compute

Data extraction, transformation, 1
[Engine

(In-Memory Processing
((Working Storage)

\ A 2

System(s) of Record

6 UNSW COMP9312_23T2

Graph DB VS RDBMS

« An Example:

0 Data: a social network of 1,000,000 people each with approximately 50 friends

O Query: to find friends-of-friends connections to a depth of five degrees.

« Efficiency Comparison:

Records returned

Neodj execution time(s)

RDBMS execution time(s)
2 0.016
3 30.267
4 1543.505
5 Unfinished

0.01 ~2,500

0.168 ~110,000
1.359 ~600,000
2.132 ~800,000

7 UNSW COMP9312_23T2

Data Modelling: RDBMS vs Graph DB

= An Example: In this data center
management domain, several data
centers support a few applications |]]
using infrastructure like virtual " L “
machines and load balancers.

= The “whiteboard” form is shown on
the right

8 UNSW COMP9312_23T2

Data Modelling in RDBMS

= Data Model in RDBMS

oD O O 00

Aim: From initial whiteboard to relations

Step 1: design schema for each table
(consider data redundancy, efficiency, ...)

Step 2: design primary key (PK) and
foreign key (FK)

Step 3: insert data for each table following
the schema

Step 4: query the RDBMS using SQL
Needs careful modelling

AppDatabase

Appld: INTEGER [FK]
Databaseld: INTEGER [FK]

¥

]
- —

Database Server

DatabaselD: INTEGER [PK]

App

Db

Appld: INTEGER [PK]

VirtualMachineld: INTEGER [FK]

¥

J——

VirtualMachine

VirtualMachineld: INTEGER [PK]

Applnstanceld: INTEGER
Bladeld: INTEGER [FK]

i

1

Server

Bladeld: INTEGER [PK]

Rackld: INTEGER [FK}
VirtualMachineld: INTEGER

Dbt

UserApp

Userld: INTEGER [FK]
Appld: INTEGER [FK]

i

'
- —
1

User

Userld: INTEGER [PK]

Rack

Rackld: INTEGER [PK]

—
1

=

Load Balancer

LoadBalancedld: INTEGER [PK]

Rackld: INTEGER [FK]

UNSW COMP9312_23T2

Data Modelling in Graph DB

= Data Model in Graph DB

o000 0 0

Aim: From initial whiteboard to Graph DB

Step 1: insert data for entities and relationships
Step 2: query the Graph DB

Looks just as what they are on the whiteboard
No schema but highly expressive.

New types of data can be easily integrated

We need a query language

10

SLAVE_OF

id: Database Server 1
status: up/down

SLAVE_OF

Database: Asset

id: Database Server 2
status: up/down

RUNS_ON

HOSTED_BY

RUNS_ON RUNS_ON

HOSTED_BY

Database: Asset

id: Database Server 3
status: up/down

[App: Asset|
m@

HOSTED_BY

id: Rack 1
status: up/down

IN
LoadBalancer Asset

id: LoadBalancer 1
status: up/down

RUNS_ON

HOSTED_BY

id: Rack 2
status: up/down

IN

id: LoadBalancer 2
status: up/down

-

id: Server 2 id: Server 3
status: up/down status: up/down status: up/down
lIN m/ IN

LoadBalancer Asset

UNSW COMP9312_23T2

Cypher: the graph query language in Neo4j eJailhLE]

An example of Cypher:
Find Sushi restaurants in New York

that my friend Philip like

Zushi Zam

MATCH (person:Person)-[:IS_FRIEND OF]->(friend),
(friend)-[:LIKES]->(restaurant:Restaurant),
(restaurant)-[:LOCATED_IN]->(loc:Location),
(restaurant)-[:SERVES]->(type:Cuisine)

WHERE person.name = 'Philip’
AND loc.location 'New York'

location: AND type.cuisine = 'Sushi’

name: LOCATED_IN New York
iSushi

RETURN restaurant.name, count(*) AS occurrence
ORDER BY occurrence DESC
LIMIT 5

11 UNSW COMP9312_23T2

Representing Nodes in Cypher elitEl

() //anonymous node (no label or variable) can refer to
any node in the database

(p:Person) //using variable p and label Person
(:Technology) //no variable, label Technology

(work:Company) //using variable work and label Company

12 UNSW COMP9312_23T2

Representing Relationships Optional

= - or->or<- //anonymous relationship
rel]-> //using variable rel to denote a relationship
- of any label

rel:LIKES]-> //using variable rel to denote a
elationship of label LIKES

:LIKES]-> //denote a relationship of label LIKES

since: 2018

)

//data stored with this direction
CREATE (p:Person)-[:LIKES]->(t:Technology)

//query relationship backwards will not return results
MATCH (p:Person)<-[:LIKES]-(t:Technology)

//better to query with undirected relationship unless sure of direction
MATCH (p:Person)-[:LIKES]-(t:Technology)

13 UNSW COMP9312_23T2

Node or Relationship Properties WgelitLEl

:IS_FRIENDS_WITH name: Neodj
type: Graphs

name: Jennifer

© Node property: (p:Person {name: 'Jennifer'})

© Relationship property: -[rel:IS_FRIENDS WITH {since: 2018}]->

14 UNSW COMP9312_23T2

Find nodes by relationships Optional

’ name: Michael

JAS_FRIENDS WITH name: Neodj

type: Graphs

name: Jennifer

MATCH (:Person {name: 'Jennifer'})-[:WORKS FOR]->(company:Company)
RETURN company

15 UNSW COMP9312_23T2

Create a node Optional

:IS_FRIENDS_WITH

type: Graphs

name: Jennifer

CREATE (friend:Person {name: 'Mark'})
RETURN friend

16 UNSW COMP9312_23T2

Create a relationship Optional

:IS_FRIENDS_WITH

type: Graphs

name: Jennifer

MATCH (jennifer:Person {name: 'Jennifer'})
MATCH (mark:Person {name: 'Mark'})
CREATE (jennifer)-[rel:IS FRIENDS WITH]->(mark)

17 UNSW COMP9312_23T2

Other operations Optional

Create/modify/delete nodes/edges/properties
Merge nodes
Selection

18 UNSW COMP9312_23T2

Some Complex Patterns Optional

RETURN friend.name

§ e, o,
N g 35' %% g f@ H %‘% //Queryl: find which people are friends of someone who works for Neo4j
*"%% ”@ Y ° MATCH (p:Person)-[r:IS_FRIENDS WITH]->(friend:Person)
Mo WHERE exists((p)-[:WORKS_FOR]->(:Company {name: 'Neo4j'}))
6. o 0% @ — @ | RETURN p, r, friend
(- o £ 3
‘ oS Uy w“"@w e : % //Query2: find Jennifer's friends who do not work for a company
Q % £ “ A MATCH (p:Person)-[r:IS_FRIENDS WITH]->(friend:Person)
"‘%,% L I e WHERE p.name = 'Jennifer'’
f.é“ @ e e @Q AND NOT exists((friend)-[:WORKS_FOR]->(:Company))
%

19 UNSW COMP9312_23T2

Some Complex Patterns (Cont.) \elLLLE

\,c’ “hby
% g @ 4"4 **” p.name
S,
@ Q "Diana"
O -
\yﬁ;‘f Yoy \c,"wg“ﬁ
o

%

8

% 5

"© ¢ e
& o
/ @ @ o
’ ‘ng?’-*‘ R4 l‘%\?t
e

%

//Find who likes graphs besides Jennifer
MATCH (j:Person {name: 'Jennifer})-[r:LIKES]-(graph:Technology {type: 'Graphs'})-[r2:LIKES]-(p:Person)
RETURN p.name

"Mark”

"Melissa"

20 UNSW COMP9312_23T2

Resources Optional

OREILLY

B
= = CalNRE - &

= N &
5 AL B

More resources can be found on neo4j.com

5 J /3

Databases Graph Databases:.for Beginners
Bryce Merkl Sasaki, Joy Chao & Rachel Howard

NEW OPPORTUNITIES FOR CONNECTED DATA

lan Robinson,
Jim Webber & Emil Eifrem

21 UNSW COMP9312_23T2

