Node Embedding (optional)

COMP9312_23T2

Embedding Nodes

UNSW COMP9312_23T2

Decoder: Node Similarity

- Key choice of methods is **how they define node similarity.**
- Should two nodes have a similar embedding if they...
	- are linked?
	- share neighbors?
	- have similar "structural roles"?
- We will now learn node similarity definition that uses random walks, and how to optimize embeddings for such a similarity measure.

Train/Optimize Node Embeddings via Random Walks

Notation

- **Vector** \mathbf{z}_u : The embedding of node u (what we aim to find).
- **Probability** $P(v | z_u)$: \Longleftarrow Our model prediction based on z_u
	- **The (predicted) probability** of visiting node ν on random walks starting from node u .
- ¡ **Softmax** function
	- K probabilities that sum to 1: Turns vector of K real values (model predictions) into .
- ¡ **Sigmoid** function:
	- S-shaped function that turns real values into the range of (0, 1). Written as $S(x)$

Random Walk

Given a *graph* and a *starting point*, we **select a neighbor** of it at **random**, and move to this neighbor; then we select a neighbor of this point at random, and move to it, etc. The (random) sequence of points visited this way is a **random walk on the graph**.

Random-Walk Embeddings

probability that *u* and *v* $\mathbf{Z}_{11}^{\mathsf{T}}\mathbf{Z}_{12} \approx$ co-occur on a random walk over the graph

Random-Walk Embeddings

1. Estimate probability of visiting node ν on a random walk starting from node u using some random walk strategy $$

2. Optimize embeddings to encode these random walk statistics:

Similarity in embedding space (Here: dot product=cos(θ)) encodes ran \bigwedge^{\bullet} θ walk "similarity"

 $\propto P_R(v|u)$

 \mathbf{Z}_i

Why random walks

1. **Expressivity:** Flexible stochastic definition of node similarity that incorporates both local and higher-order neighborhood information **Idea:** if random walk starting from node u visits v with high probability, u and v are similar (high-order multi-hop information)

2. **Efficiency:** Do not need to consider all node pairs when training; only need to consider pairs that co-occur on random walks

Unsupervised Feature Learning

- **Intuition: Find embedding of nodes in**
	- d -dimensional space that preserves similarity
- Idea: Learn node embedding such that nearby nodes are close together in the network
- **Given a node** u **, how do we define nearby nodes?**
	- N_R u ... neighbourhood of u obtained by some random walk strategy R

Feature Learning: Loss

- Given $G = (V,E)$,
- Our goal is to learn a mapping $f: u \to \mathbb{R}^d : f(u) = \mathbf{z}_u$
- Log-likelihood objective:

 $\max_{f} \sum_{u \in V} \log P(N_R(u) | \mathbf{z}_u)$
 $N_R(u)$ is the neighborhood of node *u* by strategy R

Given node u , we want to learn feature representations that are predictive of the nodes in its random walk neighborhood $N_R(u)$

Feature Learning: Loss (cont)

- 1. Run short fixed-length random walks starting from each node u in the graph using some random walk strategy R
- 2. For each node u collect $NR(u)$, the multiset* of nodes visited on random walks starting from u
- 3. Optimize embeddings according to: Given a node u , predict its neighbors $N_R(u)$

 $\max_{f} \sum_{k} \log P(N_R(u) | \mathbf{z}_u) \implies \text{Maximum likelihood objective}$ $u \in V$

 $N_R(u)$ can have repeat elements since nodes can be visited multiple times on random walks

Feature Learning: Loss (cont)

Equivalently,

$$
\mathcal{L} = \sum_{u \in V} \sum_{v \in N_R(u)} -\log(P(v|\mathbf{z}_u))
$$

- **Intuition:** Optimize embeddings z_{11} to maximize \bullet the likelihood of random walk co-occurrences
- **Parameterize** $P(v|\mathbf{z}_u)$ using softmax: \bullet

$$
P(v|\mathbf{z}_u) = \frac{\exp(\mathbf{z}_u^{\mathrm{T}} \mathbf{z}_v)}{\sum_{n \in V} \exp(\mathbf{z}_u^{\mathrm{T}} \mathbf{z}_n)}
$$

Why softmax? We want node ν to be most similar to node u (out of all nodes n). **Intuition:** $\sum_i \exp(x_i) \approx$ $max exp(x_i)$

Feature Learning: Loss (cont)

Putting it all together:

Optimizing random walk embeddings =

Finding embeddings z_n that minimize $\mathcal L$

Random Walk Optimization

But doing this naively is too expensive!

Negative Sampling

Solution: Negative sampling

$$
\log(\frac{\exp(\mathbf{z}_{u}^{T}\mathbf{z}_{v})}{\sum_{n\in V}\exp(\mathbf{z}_{u}^{T}\mathbf{z}_{n})})
$$

Why is the approximation valid? Technically, this is a different objective. But Negative Sampling is a form of Noise Contrastive Estimation (NCE) which approx. maximizes the log probability of softmax.

New formulation corresponds to using a logistic regression (sigmoid func.) to distinguish the target node v from nodes n_1 sampled from background distribution P ".

More at https://arxiv.org/pdf/1402.3722.pdf

Instead of normalizing w.r.t. all nodes, just normalize against k random "**negative samples**" n ln practice $k = 5-20$

Training: Stochastic Gradient Descent

After we obtained the objective function, how do we optimize (minimize) it?

 $\mathcal{L} = \sum_{u \in \mathcal{L}} \sum_{v \in \mathcal{L}} -\log(P(v|\mathbf{z}_u))$ $\overline{u \in V} v \in \overline{N_R}(u)$

- **Gradient Descent:** a simple way to minimize L :
	- Initialize z_i at some randomized value for all i.
	- Iterate until convergence.
		- For all *i*, compute the derivative $\frac{\partial \mathcal{L}}{\partial z}$. η : learning rate For all *i*, make a step towards the direction of derivative: $z_i \leftarrow z_i - \eta \frac{\partial \mathcal{L}}{\partial z_i}$.

SGD (cont)

Stochastic Gradient Descent: Instead of evaluating gradients over all examples, evaluate it for each **individual** training example.

- Initialize z_i at some randomized value for all i.
- Iterate until convergence: $\mathcal{L}^{(u)} = \sum_{v \in N_R(u)} -\log(P(v|\mathbf{z}_u))$
■ Sample a node *i*, for all *j* calculate the derivative $\frac{\partial \mathcal{L}^{(i)}}{\partial z_i}$.
	-

• For all *j*, update:
$$
z_j \leftarrow z_j - \eta \frac{\partial \mathcal{L}^{(i)}}{\partial z_j}
$$
.

Random Walks: Summary

- Run short fixed-length random walks starting $1.$ from each node on the graph
- For each node u collect $N_R(u)$, the multiset of $2.$ nodes visited on random walks starting from u
- Optimize embeddings using Stochastic $3.$ **Gradient Descent:**

$$
\mathcal{L} = \sum_{u \in V} \sum_{v \in N_R(u)} -\log(P(v|\mathbf{z}_u))
$$

We can efficiently approximate this using negative sampling!

Node2Vec

How to random walk?

- So far we have described how to optimize embeddings given a random walk strategy R
- ¡ **What strategies should we use to run these random walks?**
	- § Simplest idea: **Just run fixed-length, unbiased random walks starting from each node** (i.e., DeepWalk from Perozzi et al., 2013)
		- The issue is that such notion of similarity is too constrained
- ¡ **How can we generalize this?**

Reference: Perozzi et al. 2014. DeepWalk: Online Learning of Social Representations. *KDD.*

Overview of node2vec

- **Goal:** Embed nodes with similar network neighborhoods close in the feature space.
- We frame this goal as a maximum likelihood optimization problem, independent to the downstream prediction task.
- **Key observation:** Flexible notion of network neighborhood $N_R(u)$ of node u leads to rich node embeddings
- Develop biased 2^{nd} order random walk R to generate network neighborhood $N_R(u)$ of node u

Reference: Grover et al. 2016. node2vec: Scalable Feature Learning for Networks. *KDD.*

node2vec: biased walks

Idea: use flexible, biased random walks that can trade off between local and global views of the network Grover and Leskovec, 2016).

node2vec: biased walks

Two classic strategies to define a neighborhood $N_R(u)$ of a node u :

Walk of length 3 ($N_R(u)$ of size 3):

 $N_{BFS}(u) = \{s_1, s_2, s_3\}$ Local microscopic view $N_{DFS}(u) = \{s_4, s_5, s_6\}$ Global macroscopic view

BFS:

Micro-view of neighbourhood

DFS:

Macro-view of neighbourhood

Interpolating BFS and DFS

Biased fixed-length random walk R that given a node u generates neighborhood $N_R(u)$

Two parameters:

- § **Return parameter :**
	- Return back to the previous node
- § **In-out parameter :**
	- Moving outwards (DFS) vs. inwards (BFS)
	- Intuitively, q is the "ratio" of BFS vs. DFS

node2vec: biased walks

Biased 2nd-order random walks explore network neighborhoods:

- **Random walk just traversed edge (** s_1 **, w) and is now at w**
- **Insight:** Neighbors of **w** can only be:

Idea: Remember where the walk came from

node2vec: biased walks

Walker came over edge (s_1, w) and is at w. Where to go next?

- **BFS-like** walk: Low value of p
- **DFS-like** walk: Low value of q

Unnormalized transition prob. segmented based on distance from s_1

 $N_R(u)$ are the nodes visited by the biased walk

node2vec algorithm

- 1) Compute random walk probabilities
- 2) Simulate r random walks of length l starting from each node u
- 3) Optimize the node2vec objective using Stochastic Gradient Descent
- **Example 1.5 Thear-time** complexity
- All 3 steps are individually parallelizable

Other Random Walk Methods

¡ **Different kinds of biased random walks:**

- Based on node attributes (Dong et al., 2017).
- Based on learned weights (Abu-El-Haija et al., 2017)

¡ **Alternative optimization schemes:**

§ Directly optimize based on 1-hop and 2-hop random walk probabilities (as in LINE from Tang et al. 2015).

¡ **Network preprocessing techniques:**

• Run random walks on modified versions of the original network (e.g., Ribeiro et al. 2017's struct2vec, Chen et al. 2016's HARP).

Summary of Node Embedding

Core idea: Embed nodes so that distances in embedding space reflect node similarities in the original network.

Different notions of node similarity:

- § Naïve: similar if 2 nodes are connected
- Neighborhood overlap (covered in the former topic)
- § Random walk approaches **(covered today)**

Summary of Node Embedding (cont)

- ¡ **So what method should I use..?**
- No one method wins in all cases....
	- E.g., node2vec performs better on node classification while alternative methods perform better on link prediction (Goyal and Ferrara, 2017 survey)
- Random walk approaches are generally more efficient
- **In general:** Must choose definition of node similarity that matches your application!

