Node Embedding
(optional)

COMP9312_23T2

dding Nodes
T

Goal: similarity(u,v) = Z,zZ,

in the original network Similarity of the embedding

Need to definel

original network embedding space

der: Node Similarity

Key choice of methods is how they define node similarity.

Should two nodes have a similar embedding if they...
= are linked?

= share neighbors?

= have similar “structural roles”?

We will now learn node similarity definition that uses random walks,
and how to optimize embeddings for such a similarity measure.

timize Node Embeddings via
alks

ion

Vector Z,: The embedding of node u (what we aim to find).

Probability P(v |z,) : === Our model prediction based on z,

* The (predicted) probability of visiting node v on
random walks starting from node w.

Softmax function
= Turns vector of K real values (model predictions) into

K probabilities that sum to 1: o(2); = Ke a—
Zj:le J

Sigmoid function:

= S-shaped function that turns real values into the range of (0, 1).
Written as S(x) =

1+e—X’

om Walk

——

10
Step 3 l Step 4 @
1

Step 5
\
1

Given a graph and a starting point, we select a
neighbor of it at random, and move to this
neighbor; then we select a neighbor of this point
at random, and move to it, etc.

The (random) sequence of points visited this
way is a random walk on the graph.

om-Walk Embeddings

probability that U and v
ZTZ ~ COo-occur on arandom
u-v
walk over the graph

om-Walk Embeddings

1. Estimate probability of visiting node v on a
random walk starting from node u using some
random walk strategy R

2. Optimize embeddings to encode these random
walk statistics:

Similarity in embedding space (Here: dot product=cos(8)) encodes ral
walk “similarity”

random walks

1. Expressivity: Flexible stochastic definition of node similarity that
incorporates both local and higher-order neighborhood information
Idea: if random walk starting from node u visits v with high probability,
U and v are similar (high-order multi-hop information)

2. Efficiency: Do not need to consider all node pairs when training;
only need to consider pairs that co-occur on random walks

pervised Feature Learning

Intuition: Find embedding of nodes in

d-dimensional space that preserves similarity

ldea: Learn node embedding such that nearby nodes are
close together in the network

Given a node u, how do we define nearby nodes?

“ Np u .. neighbourhood of u obtained by some random walk

strategy R

re Learning: Loss

= GivenG = (V,E),
= Our goal is to learn a mapping f:u = R%: f(u) =z,

= Log-likelihood objective:

max > log P(Na(w)])

uev
Ng(u) is the neighborhood of node u by strategy R

= Given node u, we want to learn feature representations that are predictive
of the nodes in its random walk neighborhood N (u)

re Learning: Loss (cont)

1. Run short fixed-length random walks starting from each node u in
the graph using some random walk strategy R

2. For each node u collect NR(u), the multiset* of nodes visited on
random walks starting from u

3. Optimize embeddings according to: Given a node u, predict its
neighbors N(u)

max Z logP(Nr(u)| Zy) = Maximum likelihood objective

uev
*Ngr(u) can have repeat elements since nodes can be visited

multiple times on random walks

re Learning: Loss (cont)

Equivalently,

L=)) —logP(v|z)

ueV veNg(u)

* Intuition: Optimize embeddings z, to maximize
the likelihood of random walk co-occurrences

* Parameterize P(v|z,) using softmax:

T Why softmax?
explZ,, Z We want node v to be
P (’U | yA) = p(u v) most similar to node u
u Z T (out of all nodes n).
nev exp(zu Zn) Intuition: }; exp(x;) =

max exp(x;)
L

re Learning: Loss (cont)

Putting it all together:

- eXP(ZEZv)
£=2, Q. Ry p(@lzy)

UEV veENgR(U)

sum over all sum over nodes v predicted probability of u
nodes u seen on random and v co-occuring on
walks starting from u random walk

Optimizing random walk embeddings =

Finding embeddings z,, that minimize L

14

om Walk Optimization

But doing this naively is too expensive!

exp(z,Z,)
£=), 2, ety Ty

uevV veNgp(u)

\/

Nested sum over nodes gives
O(|V|?) complexity!

15

Solution: Negative sampling

sigmoid function

(makes each term a “probability”
between 0 and 1)

Instead of normalizing w.rt. all nodes, just normalize against k random “negative

samples” n. In practice k =5-20

tive Sampling

Why is the approximation valid? Technically, this is a different
objective. But Negative Sampling is a form of Noise

Contrastive Estimation (NCE) which approx. maximizes the log
probability of softmax.

New formulation corresponds to using a logistic regression
(sigmoid func.) to distinguish the target node v from nodes ni

sampled from background distribution P-.

More at https://arxiv.org/pdf/1402.3722.pdf

random distribution
over nodes

ing: Stochastic Gradient Descent

After we obtained the objective function, how do we optimize
(minimize) it?

L=)") -log(P(vlz,)

u€eV veNg(u)

= Gradient Descent: a simple way to minimize L :
" |nitialize z; at some randomized value for all i.

" |terate until convergence.

. . . oL : i
® For all i, compute the derivative 5 n: learning rate
i

. oL
" For all i, make a step towards the direction of derivative:z; « z; — Ny,
i

17

(cont)

Stochastic Gradient Descent: Instead of evaluating gradients over all
examples, evaluate it for each individual training example.

" |nitialize z; at some randomized value for all i.

" [terate until convergence: W = z —log(P(v|zy))

VENR (W) al:(l)
* Sample a node [, for all j calculate the derivative —
j
For all j, updat 0L
n T = T —
orall j, update:z; < z; — 1 o7

om Walks: Summary

Run short fixed-length random walks starting
from each node on the graph

For each node u collect Ni (1), the multiset of
nodes visited on random walks starting from u

Optimize embeddings using Stochastic
Gradient Descent:

L=) % -log(P(vlz)

UEV veNg(u)

We can efficiently approximate this using
negative sampling!

19

o
N

to random walk?

= So far we have described how to optimize embeddings given a
random walk strategy R

= What strategies should we use to run these random walks?

= Simplest idea: Just run fixed-length, unbiased random walks starting
from each node (i.e., DeepWalk from Perozzi et al., 2013)

= The issue is that such notion of similarity is too constrained

= How can we generalize this?

Reference: Perozzi et al. 2014. Deep\Walk: Online Learning of Social Representations. KDD.

iew of node2vec

Goal: Embed nodes with similar network neighborhoods close in the
feature space.

We frame this goal as a maximum likelihood optimization problem,
independent to the downstream prediction task.

ey observation: Flexible notion of network neighborhood Ngr(u) of node u
leads to rich node embeddings

Develop biased 2" order random walk R to generate network neighborhood
Ngr(u) of node u

Reference: Grover et al. 2016. node2vec: Scalable Feature Learning for Networks. KDD.

vec: biased walks

Idea: use flexible, biased random walks that can trade off between local
and views of the network (Grover and Leskovec, 2016).

vec: biased walks

Two classic strategies to define a neighborhood Nr(u) of a node u:

Walk of length 3 (N (u) of size 3):
Ngrs(u) = { s1,52,53} Local microscopic view

Npps(u) = { s4, 55,55} Global macroscopic view

24

s DFS

BFS: DFS:
Micro-view of Macro-view of
neighbourhood neighbourhood

olating BFS and DFS

Biased fixed-length random walk R that given a node u generates
neighborhood Nr(u)

Two parameters:
= Return parameter p:
= Return back to the previous node

" |n-out parameter q:

= Moving outwards (DFS) vs. inwards (BFS)
= Intuitively, g is the “ratio” of BFS vs. DFS

26

vec: biased walks

Biased 2~-order random walks explore network neighborhoods:
= Random walk just traversed edge (s1, w) and is now at w

" Insight: Neighbors of w can only be:

Same distance to s1

@ ,\
— Back to s1

Idea: Remember where the walk came from

vec: biased walks

Walker came over edge (s1, W) and is at w. Where to go next?
Prob. Dist. (s1,1)

W —

= BFS-like walk: Low value of p
* DFS-like walk: Low value of g

Target t

S+

1/p| 0

1 1 1
1/qg| 2
1/q1 2

Unnormalized
transition prob.
segmented based
on distance from s

Ng (u) are the nodes visited by the biased walk

28

vec algorithm

1) Compute random walk probabilities
2) Simulate r random walks of length [starting from each node u

3) Optimize the node2vec objective using Stochastic Gradient Descent

Linear-time complexity

All 3 steps are individually parallelizable

29

r Rahdom Walk Methods

Different kinds of biased random walks:

" Based on node attributes (Dong et al., 2017).

* Based on learned weights (Abu-El-Haija et al., 2017)

Alternative optimization schemes:

* Directly optimize based on 1-hop and 2-hop random walk probabilities (as in
LINE from Tang et al. 2015).

Network preprocessing techniques:

* Run random walks on modified versions of the original network (e.g., Ribeiro
et al. 2017’s struct2vec, Chen et al. 2016’s HARP).

ary of Node Embedding

Core idea: Embed nodes so that distances in embedding space reflect
node similarities in the original network.

Different notions of node similarity:

= Naive: similar if 2 nodes are connected

* Neighborhood overlap (covered in the former topic)
= Random walk approaches (covered today)

31

ary of Node Embedding (cont)

So what method should | use..?

No one method wins in all cases....

= E.g., node2vec performs better on node classification while alternative methods
perform better on link prediction (Goval and Ferrara, 2017 survey)

Random walk approaches are generally more efficient

In general: Must choose definition of node similarity that
matches your application!

