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Several slides are from Standford CS224W: Machine Learning with Graphs
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Raw Data Graph Structured 
Features

Learning 
Algorithm Prediction

Recap: Feature Engineering
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Given an input graph, extract node, link and graph-level features, learn a
model (SVM, neural network, etc.) that maps features to labels.

Feature Engineering

Covered in Topic 6
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Raw Data Graph Structured 
Features

Learning 
Algorithm Prediction

Recap: Feature Engineering
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Node / Edge / Graph
Various metric/methods to design features to represent graph.
Which metric is the best? Ask machine!

Graph Representation Learning alleviates the need to do feature 
engineering every single time.

Representation Learning to Learn the features



UNSW COMP9312_23T24

Node Embedding
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Graph Representation Learning
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Representation node/edge/graph by features (i.e., vectors)

Represent a graph structure using features is also called

Graph Embedding.
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Intuition: Map nodes to 𝑑-dimensional 
embeddings such that similar nodes in the 
graph are embedded close together

f ( )=
Input graph 2D node embeddings

Node Embeddings

6
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Why Node Embedding
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Map nodes into an embedding space
§ Similarity of embeddings between nodes indicates their similarity

in the network. For example:
§ Both nodes are close to each other (connected by an edge)

§ Encode network information
§ Potentially used for many downstream predictions

With embeddings (features), we can use ML/DL techniques to solve 
may real problems.
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Node Embedding: A Case Study
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2D embedding of nodes of the Zachary’s Karate Club network:

Image from: Perozzi et al. DeepWalk: Online Learning of Social Representations. KDD 2014.
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Encoder & Decoder in NLP
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Embedding Nodes
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Encode nodes so that similarity in the embedding space (e.g., dot 
product) approximates similarity in the graph.
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Embedding Nodes
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Goal:

Need to define!
Similarity of the embedding

similarity	 𝑢,	𝑣
in the original network
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Embedding Nodes
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1. Encoder maps from nodes to embeddings
2. Define a node similarity function (i.e., a  measure of similarity in the 
original network)
3. Decoder 𝐃𝐄𝐂 maps from embeddings to the  similarity score
4. Optimize the parameters of the encoder so that

Similarity of the embedding

similarity	 𝑢,	𝑣
in the original network

𝐃𝐄𝐂(𝒛𝒗	,	𝒛𝒖)	=
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similarity	 𝑢,	𝑣
Similarity of 𝑢 and 𝑣 in the 

original network

Two Key Components

13

¡ Encoder: maps each node to a low-dimensional vector

dot product between node 
embeddings

Decoder

ENC	 𝑣	

node in the input graph

¡ Similarity function: specifies how the relationships in vector 
space map to the relationships in the original network

d-dimensional  
embedding
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“Shallow” Encoding
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Simplest encoding approach: encoder is just an embedding-lookup.

matrix, each column is a node 
embedding [what we learn /optimize]

indicator vector, all zeroes except a 
one in column indicating node v

ENC	 𝑣	 =	𝐳𝒗	=	𝐙	⋅	𝑣

𝚭	∈	ℝ𝑑×	𝒱

𝑣	∈	𝕀	𝒱
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“Shallow” Encoding

15

Simplest encoding approach: encoder is just an embedding-lookup

Dimension/size  
of embeddings

one column per node

embedding  
matrix

embedding vector for a
specific node

𝐙	=
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Framework Summary
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¡ Encoder + Decoder Framework
§ Shallow encoder: embedding lookup

§ Parameters to optimize: 𝐙 which contains node embeddings for all nodes
𝑢 ∈ 𝑉

§ We will cover deep encoders (GNNs) in the future
§ Decoder: based on node similarity.
§ Objective: maximize for node pairs (𝑢, 𝑣)	that are similar
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Decoder: Node Similarity
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¡ Key choice of methods is how they define node similarity.

¡ Should two nodes have a similar embedding if they…
§ are linked?
§ share neighbors?
§ have similar “structural roles”?

¡ We will now learn node similarity definition that uses random walks,
and how to optimize embeddings for such a similarity measure.

Representative methods: DeepWalk, node2vec
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Other important things
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¡ This is unsupervised/self-supervised way of learning node
embeddings
§ We are not utilizing node labels
§ We are not utilizing node features
§ The goal is to directly estimate a set of coordinates (i.e., the embedding) of a 

node so that some aspect of the network structure (captured by DEC) is 
preserved

¡ These embeddings are task independent
§ They are not trained for a specific task but can be used for any task.
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Limitations of shallow embedding
§𝑶(|𝑽|) parameters are needed:
§No sharing of parameters between nodes
§Every node has its own unique embedding

§ Inherently “transductive”:
§Cannot generate embeddings for nodes that are not seen during training

§Do not incorporate node features:
§Many graphs have features that we can and should leverage

19
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Deep Encoding
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Raw Data Graph Structured 
Features

Learning 
Algorithm Prediction

Deep Encoding

21

We will now discuss deep methods based on graph neural networks
(GNNs):

multiple layers of
non-linear transformations 
based on graph structure

ENC	 𝑣	 =



UNSW COMP9312_23T2

Images

Modern deep learning toolbox is designed 
for simple sequences & grids

Modern ML Toolbox

Text/Speech

22
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…

Output: Node embeddings. 
Also, we can embed subgraphs, 
graphs

Deep Graph Encoders

23
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But networks are far more complex!

§ Arbitrary size and complex topological 
structure (i.e., no spatial locality like grids)

vs.

Networks Images

§ No fixed node ordering or reference point
§ Often dynamic and have multimodal features

Text

24
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Tasks on Networks

Tasks we will be able to solve:
¡ Node classification
§Predict a type of a given node

¡ Link prediction
§Predict whether two nodes are linked

¡ Community detection
§ Identify densely linked clusters of nodes

¡ Network similarity
§How similar are two (sub)networks

25
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Setup

¡Assume we have a graph 𝑮:
§𝑉 is the vertex set
§𝑨 is the adjacency matrix (assume binary)
§𝑿 ∈ ℝ :m×|V| is a matrix of node features
§𝑣: a node in 𝑉; 𝑁 (𝑣): the set of neighbors of 𝑣.
§Node features:
§Social networks: User profile, User image
§When there is no node feature in the graph dataset:
§Indicator vectors (one-hot encoding of a node)
§Vector of constant 1: [1, 1, …, 1]

26
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¡ Join adjacency matrix and features
¡ Feed them into a deep neural net:

¡ Issues with this idea:
§ 𝑂(|𝑉|)	parameters
§ Not applicable to graphs of different sizes
§ Sensitive to node ordering

¡ Issues with this idea:

A  

B  
C  

D  

E

A B C D E

0 1 1 1 0

1 0 0 1 1
1 0 0 1 0
1 1 1 0 1

0 1 0 1 0

1 0
0 0

0 1
1 1
1 0

Feat

• Done

?
C

A  B

D

E

A Naïve Approach

27
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Graph Convolutional Networks
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CNN on an image:

Goal is to generalize convolutions beyond simple lattices 
Leverage node features/attributes (e.g., text, images)

29
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What about Graphs?

Talk on Deep learning on graphs: successes, challenges by Michael Bronstein

30
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What about Graphs?

Talk on Deep learning on graphs: successes, challenges by Michael Bronstein
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What about Graphs?
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What about Graphs?

33



UNSW COMP9312_23T2

Graphs look like this

or this

1. No fixed notion of locality or sliding window on the graph
2. Graph is permutation invariant

34
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Convolutional layer with 3x3 filter

Idea: transform information at the neighbors and combine it:
§ Transform “messages” ℎ! from neighbors: 𝑊!ℎ!
§ Add them up:

Image                              Graph

35
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A Computation Graph

Determine node 
computation graph

𝑖

Propagate and 
transform information

𝑖

Learn how to propagate information across the 
graph to compute node features

36
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Key idea: Generate node embeddings 
based on local network neighborhoods

INPUT GRAPH

TARGET NODE B

D

E

F

C

A

B

C

D

A

A

A

C

F

E

A

B

Aggregate Neighbors

37
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Intuition: Nodes aggregate information from 
their neighbors using neural networks

INPUT GRAPH

TARGET NODE B

D

E

F

C

A

B

C

D

A

A

A

C

F

E

A

B

Neural networks

Aggregate Neighbors

38
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Intuition: Network neighborhood defines a 
computation graph

Every node defines a computation 
graph based on its neighborhood!

Aggregate Neighbors

39
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¡Model can be of arbitrary depth:
¡ Nodes have embeddings at each layer
¡ Layer-0 embedding of node 𝑢	is its input feature, 𝑥𝑢
¡ Layer-𝑘	embedding gets information from nodes that are K hops away

INPUT GRAPH

TARGET NODE B

D

E

F

C
A

Deep: Many Layers

40
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INPUT GRAPH

TARGET NODE B

D

E

F

C

A

B

C

D

A

A

A

C

F

B

E

A

?

?

?

?

What is in the box?

Neighborhood Aggregation

Neighborhood aggregation: Key distinctions are in how different
approaches aggregate information across the layers

41
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INPUT GRAPH

TARGET NODE B

D

E

F

C

A

B

C

D

A

A

A

C

F

E

A

B

(1) average messages 
from neighbors

(2) apply neural network

Neighborhood Aggregation

Basic approach: Average information from neighbors and apply a
neural network

42
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(2) Aggregation

(1) Message
GNN Layer 1

INPUT GRAPH

TARGET NODE B

D

E

F

C
A

A GNN Layer

GNN Layer = Message + Aggregation
• Different instantiations under this perspective
• GCN, GraphSAGE, GAT, …

43
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A Single GNN Layer

44
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Message Computation

45
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Message Aggregation

46
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Message Aggregation Issue

47
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A Single GNN Layer

48
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Activation (Non-linearity)

49
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The Maths: Deep Encoder

Basic approach: Average neighbor messages and apply a neural
network

50
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We can feed these embeddings into any loss function
and run SGD to train the weight parameters

¡ ℎ"# :the hidden representation of node 𝑣 at layer 𝑙
¡ 𝑊$:weight matrix for neighborhood aggregation
¡ 𝐵$	: weight matrix for transforming hidden vector of self

Model Parameters

51
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Matrix Formulation

52
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Matrix Formulation

53



UNSW COMP9312_23T2

Compute the output of the first graph 
convolutional layer based on the above formula

Example

54
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Adjacent matrix A:

The matrix 𝐷*+𝐴:

The matrix 𝐷*+:

Example

55



UNSW COMP9312_23T2

Matrix 𝐷*+𝐴 :

Matrix 𝐷*+𝐴𝐻 :

Example

Matrix 𝐻0 :

56
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Matrix 𝐷*+𝐴𝐻 :

Matrix 𝐷*+𝐴𝐻𝑊, :

Example

Matrix 𝑊0 :

57



UNSW COMP9312_23T2

Matrix 𝐻𝐵, :

Example

Matrix 𝐵0 : Matrix 𝐻0 :

58
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Matrix 𝐻𝐵, :Matrix 𝐷*+𝐴𝐻𝑊, :

Matrix 𝐷*+𝐴𝐻𝑊, +𝐻𝐵, :

Example

59
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Matrix 𝐷*+𝐴𝐻𝑊, +𝐻𝐵, :

Matrix 𝜎(𝐷*+𝐴𝐻𝑊, +𝐻𝐵,) :

Example

60
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Θ

¡ Node embedding 𝒛# is a function of input graph
¡ Supervised setting: we want to minimize the

loss ℒ:
minℒ(𝒚, 𝑓(𝒛.))

§𝒚: node label
§ℒ	could be L2 if 𝒚	is real number, or cross entropy if 𝒚	is categorical

¡ Unsupervised setting:
§No node label available
§Use the graph structure as the supervision!

Train a GNN

61
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Safe or toxic 
drug?

Safe or toxic 
drug?

E.g., a drug-drug 
interaction network

Supervised Training

Directly train the model for a supervised task (e.g., node classification)

62
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Supervised Training

Directly train the model for a supervised task (e.g., node classification)
- Use cross entropy loss

63
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Unsupervised Training

¡ “Similar” nodes have similar embeddings

§ Where y/,. =1 when node 𝑢 and 𝑣 are similar
§ CE is the cross entropy 
§ DEC	is the decoder such as inner product

¡ Node similarity can be anything from previous lectures, e.g., a loss 
based on:
§ Random walks (node2vec, DeepWalk, struc2vec)
§ Node proximity in the graph

64



UNSW COMP9312_23T2

(2) Define a loss function on the 
embeddings

𝒛A

(1) Define a neighborhood aggregation 
function

Model Design: Overview

65
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(3) Train on a set of nodes, i.e., a batch of 
compute graphs

Model Design: Overview

66
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Even for nodes we never 
trained on!

(4) Generate embeddings for nodes as 
needed

Model Design: Overview

67
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¡ The same aggregation parameters are 
shared for all nodes:
§ The number of model parameters is sublinear in
|𝑉|	and we can generalize to unseen nodes!

INPUT GRAPH

B

D

E

F

C
A

Compute graph for node A Compute graph for node B

shared parameters

𝑊1
shared parameters

𝐵1

Inductive Capability

68
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Inductive node embedding   Generalize to entirely unseen graphs

E.g., train on protein interaction graph from model 
organism A and generate embeddings on newly collected 
data about organism B

Train on one graph Generalize to new graph

Inductive Capability: New Graphs

69
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Train with snapshot New node arrives
Generate embedding 

for new node

¡ Many application settings constantly encounter 
previously unseen nodes:

§ E.g., Reddit, YouTube, Google Scholar

¡ Need to generate new embeddings “on the fly”

Inductive Capability: New Nodes

70
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INPUT GRAPH

TARGET NODE B

D

E

F

C
A

GNN Layer 1

GNN Layer 2
(3) Layer 
connectivity

Stacking GNN Layers

How to connect GNN layers into a GNN?
﻿ 1. Stack layers sequentially

71
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Stacking GNN Layers

72
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An Over-smoothing Problem

¡The Issue of stacking many GNN layers
§GNN suffers from the over-smoothing problem

¡The over-smoothing problem: all the node embeddings
converge to the same value
§This is bad because we want to use node embeddings to

differentiate nodes
¡Why does the over-smoothing problem happen?

73
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¡Receptive field: the set of nodes that determine the
embedding of a node of interest
§ In a 𝑲-layer GNN, each node has a receptive field of 𝑲-hop

neighborhood

Receptive Field of a GNN

74

Receptive field for 
1-layer GNN

Receptive field for 
2-layer GNN

Receptive field for 
3-layer GNN
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Receptive Field of a GNN

75

¡Receptive field overlap for two nodes
§The shared neighbors quickly grows when we increase the number 

of hops (num of GNN layers)
1-hop neighbor 
overlap Only 1 
node

2-hop neighbor 
overlap About 20 
nodes

3-hop neighbor 
overlap Almost all 
the nodes!
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Receptive Field &Over-smoothing

¡ We can explain over-smoothing via the notion of receptive field
§The embedding of a node is determined by its receptive field
§If two nodes have highly-overlapped receptive fields, then their

embeddings are highly similar
§Stack many GNN layers à nodes will have highly- overlapped 

receptive fields à node embeddings will be highly similar à
suffer from the over- smoothing problem

¡ Next: how do we overcome over-smoothing problem?
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Over-smoothing

77
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Design GNN Layer Connectivity

¡ What do we learn from the over-smoothing problem?
¡ Lesson: Be cautious when adding GNN layers
§ Unlike neural networks in other domains (CNN for image classification),

adding more GNN layers do not always help
§ Step 1: Analyze the necessary receptive field to solve your problem. E.g., by

computing the diameter of the graph
§ Step 2: Set number of GNN layers 𝐿 to be a bit more than the receptive field we

like. Do not set 𝑳 to be unnecessarily large!
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(2) Aggregation

(1) Transformation

If needed, each box could 
include a 3-layer MLP

Expressive Power for Shallow GNNs

¡ Question: How to enhance the expressive power of a GNN, if the 
number of GNN layers is small?

¡ Solution: Increase the expressive power within each GNN layer
§ In our previous examples, each transformation or aggregation function only 

include one linear layer
§ We can make aggregation / transformation become a deep neural network!

79
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Learning Outcome

¡ Generate node embeddings by aggregating neighborhood information

¡ Key distinctions are in how different approaches aggregate 

information across the layers

Acknowledgement: Jure Leskovec, Stanford University  80


