Graph Neural Networks

COMP9312_23T2

Several slides are from Standford CS224W: Machine Learning with Graphs

p: Feature Engineering

Given an input graph, extract node, link and graph-level features, learn a
model (SVM, neural network, etc.) that maps features to labels.

- - - -
t

Feature Engineering

Covered in Topic 6

p: Feature Engineering

Node / Edge / Graph
Various metric/methods to design features to represent graph.
Which metric is the best? Ask machine!

s - [- -
t

Representation Learning to Learn the features

Graph Representation Learning alleviates the need to do feature

engineering every single time.

bedding

Representation Learning

Representation node/edge/graph by features (i.e., vectors)

Represent a graph structure using features is also called

Graph Embedding.

Embeddings

Intuition: Map nodes to d-dimensional

embeddings such that similar nodes in the
graph are embedded close together

Input graph 2D node embeddings

ode Embedding

Map nodes into an embedding space

= Similarity of embeddings between nodes indicates their similarity
in the network. For example:
" Both nodes are close to each other (connected by an edge)

" Encode network information

= Potentially used for many downstream predictions

With embeddings (features), we can use ML/DL techniques to solve

may real problems.

Embedding: A Case Study

2D embedding of nodes of the Zachary’s Karate Club network:
. “.-. 06 » iw) -
. O. ; . ® o8 Ggg ® e ,)

A YR sl W 8 . .
c : " ——— vige ©

NS il

¥/ 18]
’ » 18F " *

o o5 oo o5 10 15 zo 23
Input OQutput

Image from: Perozzi et al. DeepWalk: Online Learning of Social Representations. KDD 2014.

der & Decoder in NLP

Er liebte zu essen .

Softmax E

- Enooder

Decoder i

NULL Er liebte zu essen

________________ +___+___)

He loved to eat

dding Nodes

Encode nodes so that similarity in the embedding space (e.g., dot
oroduct) approximates similarity in the graph.

PPPRTTILLLL
-
asett
.
.-
.-
.
-
o
.
.
.
.
-
»* ENC u
03
o
.
o
.
.
o
.
-

encode nodes

.
s

..

original network embedding space

dding Nodes
T

Goal: similarity(u,v) = Z,zZ,

in the original network Similarity of the embedding

Need to definel

original network embedding space

dding Nodes

1. Encoder maps from nodes to embeddings

2. Define a node similarity function (i.e., a measure of similarity in the
original network)

3. Decoder DEC maps from embeddings to the similarity score
4. Optimize the parameters of the encoder so that

DEC(Zy , Zy) = Z, Z,,

. . . ~ T
similarity (u, v) =~ Z,Z,
in the original network Similarity of the embedding

ey Components

Encoder: maps each node to a low-dimensional vector

d-dimensional
ENC(v) =z, © embedding

node in the4input graph

Similarity function: specifies how the relationships in vector
space map to the relationships in the original network

similarity(u, v) = zlz, Decoder
—_ L TN
Similarity of u and v inthe dot product between node
original network embeddings

ow" Encoding

Simplest encoding approach: encoder is just an embedding-lookup.

ENC(W) =2y =Z- v

7]Rd x [V matrix, each column is a node
€ embedding [what we learn /optimize]

e [V iIndicator vector, all zeroes except a
one in column indicating node v

ow" Encoding

Simplest encoding approach: encoder is just an embedding-lookup
embedding vector for a

embedding specific node
matrix

\
7 —

Dimension/size
> of embeddings

'®:
'@
1@:
'@
'@
'@
'@
'@
:e:

2
one column per node

ework Summary

Encoder + Decoder Framework

Shallow encoder: embedding lookup

Parameters to optimize: Z which contains node embeddings z,, for all nodes

uevVv

We will cover deep encoders (GNNs) in the future

Decoder: based on node similarity.

Objective: maximize zgzu for node pairs (u, v) that are similar

16

der: Node Similarity

Key choice of methods is how they define node similarity.

Should two nodes have a similar embedding if they...
= are linked?

= share neighbors?

= have similar “structural roles”?

We will now learn node similarity definition that uses random walks,
and how to optimize embeddings for such a similarity measure.

Representative methods: DeepWalk, node2vec

r important things

This is unsupervised/self-supervised way of learning node
embeddings

= We are not utilizing node labels

= We are not utilizing node features

" The goal is to directly estimate a set of coordinates (i.e., the embedding) of a
node so that some aspect of the network structure (captured by DEC) is
preserved

These embeddings are task independent

* They are not trained for a specific task but can be used for any task.

tions of shallow embedding

= 0(|V]) parameters are needed:
“ No sharing of parameters between nodes
" Every node has its own unique embedding

" Inherently “transductive”:
= Cannot generate embeddings for nodes that are not seen during training

" Do not incorporate node features:
= Many graphs have features that we can and should leverage

ing

20

Encoding

We will now discuss deep methods based on graph neural networks
(GNNs):

multiple layers of

ENC(v) = non-linear transformations
based on graph structure

rn ML Toolbox

5
O

D

P2
o’o

./

7]
0~ 5
IR
2 Q¢

}/’1 Sk
o1
AN

RREK

%
@,
O

>

I
X

Y, ‘ X 2]
PRI
RS
AN
NS

5%?
NXTINK
3

[)
| 39 5
,Q

xe
N
© 4
{

Text/Speech

Graph Encoders

Graph Regularization, Graph
convolutions e.g., dropout convolutions

Activation
function

Output: Node embeddings.
Also, we can embed subgraphs,
graphs

23

etworks are far more complex!

= Arbitrary size and complex topological
structure (i.e., no spatial locality like grids)

Networks Images

* No fixed node ordering or reference point
= Often dynamic and have multimodal features

24

on Networks

Tasks we will be able to solve:

Node classification
" Predict a type of a given node

Link prediction

* Predict whether two nodes are linked
Community detection

* |dentify densely linked clusters of nodes
Network similarity

*“How similar are two (sub)networks

25

Assume we have a graph G:

“V is the vertex set

" A is the adjacency matrix (assume binary)
= X € R:mXIVl js 3 matrix of node features
“v:anodeinV; N (v): the set of neighbors of v.

" Node features:
= Social networks: User profile, User image
*“When there is no node feature in the graph dataset:
“Indicator vectors (one-hot encoding of a node)
=Vector of constant 1: [1, 1, ..., 1]

26

ve Approach

= Join adjacency matrix and features
= Feed them into a deep neural net:

hidden layer 1

input layer

hidden layer 2

hidden layer 3

p A B C D E
A o1 1 1 0
B 1.0 0 1 1
c H1 0 0 1 0
D 11 1 0 1
E 01 0 1 0

= |Issues with this idea:
= 0(|V]) parameters
* Not applicable to graphs of different sizes
= Sensitive to node ordering

27

nvolutional Networks

28

on an image:

Convolutions Subsampling Convolutions Subsampling Fully connected

Goal is to generalize convolutions beyond simple lattices
Leverage node features/attributes (e.g., text, images)

about Graphs?

Grid

Yi = WiXjq + o+ WXy

Talk on Deep learning on graphs: successes, challenges by Michael Bronstein

about Graphs?

Grid

Vi = WiXjq + o+ WXy Yi = wiXj1 + o+ WeXig

Talk on Deep learning on graphs: successes, challenges by Michael Bronstein

about Graphs?

Grid

Yj = wWiXjq + o+ WaXjg yj = WiXjq + 0+ WsX;s

* Constant number of neighbors » Different number of neighbors

32

about Graphs?

yj = Wlxj,l . gl o W4Xj‘4 Yj = W1Xj'5 + oo 4 WSXj.z
* Constant number of neighbors = Different number of neighbors
* Fixed ordering of neighbors * No ordering of neighbors

33

s look like this

®—o
o
® ¢ e 1\e ®
* < or this o e o« e
\ v ® .0 %8 ® ©
® o ® L i ® °

1. No fixed notion of locality or sliding window on the graph
2. Graph is permutation invariant

olutional layer with 3x3 filter

Image Graph

Idea: transform information at the neighbors and combine it:
= Transform “messages” h; from neighbors: W;h;

= Add them up: Z Wi hi
i

k=2 .

Determine node Propagate and
computation graph transform information

Learn how to propagate information across the
graph to compute node features

36

gate Neighbors

Key idea: Generate node embeddings
based on local network neighborhoods

TARGET NODE ‘ A‘:
4
: - K

\
N
INPUTGRAPH T e .

37

gate Neighbors

Intuition: Nodes aggregate information from
their neighbors using neural networks

TARGET NODE

l

INPUT GRAPH

Neural networks

38

gate Neighbors

Intuition: Network neighborhood defines a
computation graph

Every node defines a computation
graph based on its neighborhood!

INPUT GRAPH

¢ ° ° o
. i] I 2
® Gized® %S oot °ds:0® see %67 o° % e

39

: Many Layers

= Model can be of arbitrary depth:

= Nodes have embeddings at each layer
= Layer-0 embedding of node u is its input feature, x,,
= Layer-k embedding gets information from nodes that are K hops away

Layer-0
Layer_1 @ X A
N ® 4“" ® X C
} Layer-2 .~ ® XA
2 . ® Xp
@ <« R "'-:;;;_-_.: ® X[
® Xp
..»,/ . .
INPUT GRAPH ‘. --------------- ‘ X A

40

borhood Aggregation

Neighborhood aggregation: Key distinctions are in how different
approaches aggregate information across the layers

TARGET NODE ’A‘: ’

| What is in the box?.

o< ? g- ol

N\
o-N..
INPUTGRAPH TR T .

41

borhood Aggregation

Basic approach: Average information from neighbors and apply a
neural network

(1) average messages ®
TARGET NODE from neighbors ® “:‘.‘.‘f ©
/
. 9
pad @
- - — - "'.3 E
\\ F
*®
INPUT GRAPH ‘.‘ -------------- .

(2) apply neural network

42

N Layer

GNN Layer = Message + Aggregation
 Different instantiations under this perspective

* GCN, GraphSAGE, GAT, ...
O

1

(2) Aggregation

TARGET NODE GNN Layer 1

l .‘ ’ (1) Message
[_JIPS
~ i %

Q ~...; ’ ‘
INPUT GRAPH . . ‘ .

43

gle GNN Layer

= |dea of a GNN Layer:
= Compress a set of vectors into a single vector

* Two step process:
" (1) Message
= (2) Aggregation

Node v ‘
1

(2) Aggregation

I
/TN

‘_\¢ (1) Message

' i (

Output node embedding hf,l)

l-th GNN Layer

{e o' o o}

Input node embedding h,(,l_l) ’ h,(fe_,\}zv)

(from node itself + neighboring nodes)

44

age Computation

= (1) Message computation
= Message function: () = MSGW (h(l 1))

" Intuition: Each node will create a message, which will be
sent to other nodes later

= Example: A Linear layer m() = W(l)hg_l)
= Multiply node features with weight matrix w®

TARGET NODE]

l

(2) Aggregation

INPUT GRAPH '

45

age Aggregation

= (2) Aggregation

= Intuition: Each node will aggregate the messages from
node v’s neighbors

h = AGG® ({ = N(v)})

= Example: Sum(-), Mean(-) or Max(-) aggregator
“h? = sSum(m¥%,u e N@)})

TARGET NODE Node v .

l N
(2) Aggregation

\ _ ‘ (1) Message

INPUT GRAPH . ‘ .

46

age Aggregation Issue

= Issue: Information from node v itself could get lost

= Computation of hg) does not directly depend on hg_l)

= Solution: Include hl(,l_l) when computing hl(f)

= (1) Message: compute message from node v itself
= Usually, a different message computation will be performed

000) -whn{™ © m® =pOplY

= (2) Aggregation: After aggregating from neighbors, we can
aggregate the message from node v itself

" Via concatenation or summation
Then aggregate from node itself

Flrst aggregate from nelghbors
47

gle GNN Layer

= Putting things together:

" (1) Message: each node computes a message
m{’ = MSG® (h{™),u e (N@w) U v}

" (2) Aggregation: aggregate messages from neighbors
h” = AGG® ({mﬁ), ue N(v)} , mfP)

" Nonlinearity (activation): Adds expressiveness

= Often written as g(+): ReLU(+), Sigmoid(-), ...

= Can be added to message or aggregation
O

(2) Aggregation

& e (1) Message

48

ation (Non-linearity)

Apply activation to i-th dimension of yt

embedding x Y= x

= Rectified linear unit (ReLU) - -
ReLU(x;) = max(x;, 0)

* Most commonly used
= Sigmoid
1
o) = 1+e™X

= Used only when you want to restrict the
range of your embeddings

= Parametric RelLU vl

PReLU(x;) = max(x;, 0) + a;min(x;, 0) //y =x
a; is a trainable parameter - -

= Empirically performs better than RelLU

49

aths: Deep Encoder

Basic approach: Average neighbor messages and apply a neural

network Initial 0-th layer embeddings are
ho — x _— equal to node features embedding of
v v / v at layer [
(I+1) h'fll)
h, " =|a(W, Z NI + BI,VZ € {0, ...,l— 1}
UEN (V) N \

Zoy| = h,(,L)

\ Embedding after L
layers of neighborhoo
aggregation

Average of neighbor’s Total number
previous layer embeddings of |ayers

d Non-linearity
(e.g., RelLU)

| Parameters

Trainable weight matrices
0
h() _ = x, (| e., what we learn)

hy " = o (Wi z Wﬁ\Jrlh(”) vi€{0,..,L—1}
IN(v)|

L uUeN(v)
= hv
—~~ Final node embedding

We can feed these embeddings into any loss function
and run SGD to train the weight parameters

= h! :the hidden representation of node v at layer
= W, :weight matrix for neighborhood aggregation
= B} : weight matrix for transforming hidden vector of self

51

X Formulation

= Many aggregations can be performed

efficiently by (sparse) matrix operations
© let gO = p® pWOqT Matrix of hidden embeddings H*~1
: LN AVI)
= Then: X, ey, hy” = Ay H
= Let D be diagonal matrix where
Dy, = Deg(v) = [N(v)]

* Theinverse of D: D™ is also diagonal:
Dyp = 1/IN(W)|

™!
l
= Therefore,

) (D = D7I4HW

52

X Formulation

= Re-writing update function in matrix form:

HUD = o(AH W, + HOB) KQ
where A=D714

O —pD (l)
H [hy hlVl

= Red: neighborhood aggregation

* Blue: self transformation

= In practice, this implies that efficient sparse
matrix multiplication can be used (A is sparse)

= Note: not all GNNs can be expressed in matrix form, when
aggregation function is complex

53

ple

HED = g(AHOW' + HOB)

Compute the output of the first graph
convolutional layer based on the above formula

[020 0.60 030 —0.40]
0.40 0.30 —0.20 —0.60
0.20 —0.60 0.50 —0.30
_|-040 020 020 —0.40
0.70 —0.90 0.10 —0.50
0.30 0.50 —0.30 —0.70
0.90 —0.60 0.20 —0.80
|—0.10 0.70 0.10 —0.90]

N T VR oy WY G W §

ke OO

— O O

54

- O O

it OO ek

s [o [aom B s

—_— O

O O

L M W s W W W e W W |

[T W I O W _—)

Adjacent matrix A:
[[e11010 0 0]
[186110160 8]
[110@011 8]

(61060100 8]

he matrix D~ 1A4:

T

[1e©10011]

Lo W W W W e W e W W |

T2l T2l
o~ o~
OO0 ®
<t
m
m
m
m
m
N e m
o~ oM n

N N
NN o~
OO OO
<t
m
m
m
m
m
m N
m [Fa} NN

N N
o~ o~

OO OO
<t <t

m m

m m

m m

m m

m m

m m
m N m N
OO OO
<t <t

m m

m m

m m

m m

m m

m N m

m N m

........

S S S S -

6110001 8]
(68101180 1]
660010 1e]]

n
n

ple
HD = al)WlT +HYB

: 0. . —
Matrix H": Matrix D™1A4 :
[0.20 0.60 0.30 —0.40] [[e. 0.33333334 0.33333334 0. 9.33333334 0. 0. 0.]
0.40 030 —0.20 —0.60 s o2 o o o ox os o]
020 —0.60 050 —0.30 e. 0.5 0. 0. 0.5 0. 0. 0.]
[0.25 0. 0. 0.25 0. 0. 0.25 0.25]
H —-0.40 0.20 0.20 —0.40 e. 0.33333334 0.33333334 . 0. 0. 0.33333334 0.]
"7 o070 -09 010 -0.50 O S S S S
0.30 0.50 -=0.30 -=0.70
090 —-0.60 0.20 —-0.80 . -1 .
—0.10 070 0.10 —0.90] Matrix D™ ~AH :
[[©.43333335 -0.40000001 ©.13333334 -0.46666668]
[8.875 8.175 9.175 -8.1]
[©.45 0.2 0. -0.275]
[©.55 8.3 -8.05 -8.55]
[©.15 @.225 9.2 -0.625]
[©.500000081 -©.30000001 ©.16666667 -0.56666668]
[8.275 -8.875 0.1 -8.25]
[o 9.1

.8 -0.75 5 -0.65 11
56 u 2

ple
H+D = a HOBM

Matrix D"1AH : Matrix /O -
[0.43333335 -0.40000001 ©.13333334 -0.46666663] 2 i
[8.875 8.175 8.175 -0.1] I O 0 0
[.45 8.2 0. -0.275]
[.55 -8.3 -8.05 -8.55] 1 1.0 0
[.15 8.225 8.2 -0.625] L T 1T B
[0.50000001 -0.30000001 ©.16666667 -0.56666663]
[0.275 -0.075 8.1 -0.25] _1 I 1 1_
Les o7 o 26 I [[©.43333335 ©.83333333 ©.16666667 -0.30000001]
[©.875 0.25 0.425 0.325]
[.45 0.65 0.65 0.375]
Matrix D"TAHWT - 1 e.ss 0.25 0.2 -8.35]
[.15 0.375 0.575 -0.05]
[©.50000001 ©.20000001 ©.36666668 -0.20000001]
[©.275 0.2 0.3 0.05]
[0.8 .05 0.2 -0.45 11

ple

Matrix BY :
1 0 0 1
1 0 1 0
0 O 1 3
10 10

HED = G(AHOWT

Matrix HY :
[0.20 0.60 030 —0.40]
0.40 030 —=0.20 —0.60
0.20 —0.60 0.50 —0.30
—-0.40 020 020 —0.40
0.70 —0.90 0.10 —0.50
0.30 050 —0.30 —0.70
0.90 —0.60 020 —0.80
—0.10 0.70 0.10 —0.90]

58

Matrix HBT :
[[-6.2 ©.5 -8.1 ©.5]
[-0.2 ©.2 -8.8 ©.2]
[-0.1 ©.7 8.2 0.7]
[-0.8 -0.2 -8.2 -0.2]
[0.2 0.8 -8.4 0.8]
[1. ©. 8.4 0.]
[0.1 1.1 -8.6 1.1]
[-1. eo. -8.8 o.]]

ple

HD = g(AHOW' + HVB,

. _ . T .

Matrix D"TAHWT : Matrix HB* :
[[©.43333335 ©.93333333 ©.16666667 -0.30e00001] L[-©-2 ©.5 -0.1 0©.5]
[©.075 0.25 0.425 8.325] [-0.2 0.2 -0.8 @.2]
[8.45 8.65 8.65 8.375] [-6.1 ©.7 .2 8.7]
[©.55 8.25 8.2 -8.35] [-0.8 -0.2 -0.2 -0.2]
[0.15 @.375 8.575 -8.05] [0.2 ©.8 -0.4 ©.8]
[©.50000001 ©.20000001 ©.36666668 -0.20000001] [1. ©. 0.4 o.]
[0.275 8.2 8.3 8.05] [0.1 1.1 -0.6 1.1]

[.8 @.85 9.2 -8.45 1] [-1. 8. -6.8 ©.]]

Matrix D"YAHWT + HBT :

[[©.23333335 ©.53333333 ©.06666667 ©.19999999]
[-8.125 .45 -0.375 9.525]
[©.35 1.35 0.85 1.075]
[-8.25 .85 0. -0.55]
[.35 1.175 09.175 .75]
[1.50000001 ©.20000001 ©.76666663 -0.20000001]
[©.375 1.3 -0.3 1.15]
[-0)

-0.2 .05 -0.6 -8.45 1]
59 U 2

Matrix D~"TAHWT + HBT -

[[©.23333335 @.53333333 0.06666667 0.19999999] . 1 T T

[-8.125 @.45 -8.375 8.525] - .

[.35 1.35 0.85 1.075] Matrlx O-(D AHW + HB) '

[-0.25 0.05 0. -0.55]

[o.3: 1175 ears ess] [[©.23333335 8.53333333 0.06666667 ©.19999999]

[1.50000001 ©.20000001 ©.76666668 -0.20000001] [e. 0.45 0. 0.525]

0.375 1.3 -0.3 1.15

e e o s 1 [@.35 1.35 8.85 1.875]
[e. 0.05 . .]
[6.35 1.175 8.175 0.75]
[1.50000001 ©.20000001 ©.76666668 ©.]
[6.375 1.3 . 1.15]
[e. 0.5 . . 1]

a GNN

Node embedding z,is a function of input graph

Supervised setting: we want to minimize the
loss L:

min L(y, f (2,))

“vy: node label

= L could be L2 if y is real number, or cross entropy if y is categorical
Unsupervised setting:

“ No node label available
= Use the graph structure as the supervision!

rvised Training

Directly train the model for a supervised task (e.g., node classification)

Safe or toxic

Safe or toxic drug?
drug? 'I'/Q Y
‘ I:\‘\\ /'/l

I

'5 ® E.g., a drug-drug
interaction network

62

rvised Training

Directly train the model for a supervised task (e.g., node classification)
- Use cross entropy loss

=—) wlog(a(

2,0))

Classification
weights

Encoder output:
node embedding

[]
[] Node class

. oe 0 label
Safe or toxic drug? 4 ke

63

pervised Training

“Similar” nodes have similar embeddings
L=) CEQuu DEC(2,))

Zu,Zy

“ Where y,,,, 1 =when node u and v are similar
= CE is the cross entropy
= DEC is the decoder such as inner product

Node similarity can be anything from previous lectures, e.g., a loss

based on:
* Random walks (node2vec, DeepWalk, struc2vec)

= Node proximity in the graph

| Design: Overview

(1) Define a neighborhood aggregation
function

ZA@® <

\

(2) Define a loss function on the
embeddings

65

| Design: Overview

(3) Train on a set of nodes, i.e., a batch of
compute graphs

P o : @
r /] - ‘e o - e % S .- ® =
_° deve® % oo Ceec ™

66

| Design: Overview

(4) Generate embeddings for nodes as
needed

Even for nodes we never
trained on!

INPUT GRAPH \

Koo #

% 4% A3Me |2 4 25
\ G e %ee see® "Sesig et lede Cean W sis o

67

tive Capability

= The same aggregation parameters are
shared for all nodes:

* The number of model parameters is sublinear in
|V| and we can generalize to unseen nodes!

See Tl Tl _ & _. %

:‘ shared parameters ‘

"'——‘—f—————‘ ———————————————————
Y'Y B

INPUT GRAPH Compute graph for node A Compute graph for node B

68

tive Capability: New Graphs

Zu
Train on one graph Generalize to new graph
Inductive node embedding Generalize to entirely unseen graphs

E.g., train on protein interaction graph from model
organism A and generate embeddings on newly collected

data about organism B

tive Capability: New Nodes

Generate embedding
for new node

Train with snapshot New node arrives

= Many application settings constantly encounter

previously unseen nodes:
= E.g., Reddit, YouTube, Google Scholar

= Need to generate new embeddings “on the fly”

ing GNN Layers

How to connect GNN layers into a GNN?
1. Stack layers sequentially

GNN Layer 1 /;g
\
‘—4
ol M
(3) Layer ‘ i ‘
connectivity GNN Layer2 & I
@ -; y ks ‘. Q
L XY X

71

ing GNN Layers

= How to construct a Graph Neural Network?
" The standard way: Stack GNN layers sequentially
“ Input: Initial raw node feature x,

= Qutput: Node embeddings hf,L) after L GNN layers

i hEJO) = Xy
GNN Layer

[

GNN Layer

S

GNN Layer
v 1

72

er-smoothing Problem

The Issue of stacking many GNN layers
“ GNN suffers from the over-smoothing problem

The over-smoothing problem: all the node embeddings
converge to the same value

“This is bad because we want to use node embeddings to
differentiate nodes

Why does the over-smoothing problem happen?

ptive Field of a GNN

= Receptive field: the set of nodes that determine the
embedding of a node of interest
"In a K-layer GNN, each node has a receptive field of K-hop

neighborhood
Receptive field for Receptive field for Receptive field for
1-layer GNN 2-layer GNN 3-layer GNN

O Node of interest
@ Receptive field
O Other nodes

O Node of interest
@ Receptive field
O Other nodes

O Node of interest
@ Receptive field
O Other nodes

74

ptive Field of a GNN

ickly grows when we increase the number

" The shared neighbors qu

of hops (num of GNN layers)

O Nodes of interest
@ Shared neighbors

O Other nodes

overlap Almost all

3-hop neighbor
the nodes!

O Nodes of interest
@ Shared neighbors

O Other nodes

overlap About 20

2-hop neighbor
nodes

O Nodes of interest
@ Shared neighbors

O Other nodes

1-hop neighbor
overlap Only 1

node

To)
I~

ptive Field &Over-smoothing

= We can explain over-smoothing via the notion of receptive field

“The embedding of a node is determined by its receptive field

“|f two nodes have highly-overlapped receptive fields, then their
embeddings are highly similar

= Stack many GNN layers = nodes will have highly- overlapped
receptive fields 2 node embeddings will be highly similar =2
suffer from the over- smoothing problem

= Next: how do we overcome over-smoothing problem?

-smoothing

Model 2-Layer 4-Layer 8-Layer 16-Layer 32-Layer 64-Layer

GCN-res 88.18+159 86.50+187 84.83+193 78.60+428 59.82+774 39714515
PairNorm 79.98+380 82.32+279 81.52+4366 82.29+262 81914245 81.72+282
NodeNorm 89.53+1290 88.60+136 88.02+1.67 88.41+125 88.30+130 87.40+206

Typical results of node classification accuracy on CoautorCS dataset

n GNN Layer Connectivity

Lesson: Be cautious when adding GNN layers

= Unlike neural networks in other domains (CNN for image classification),
adding more GNN layers do not always help

= Step 1: Analyze the necessary receptive field to solve your problem. E.g., by
computing the diameter of the graph

= Step 2: Set number of GNN layers L to be a bit more than the receptive field we
like. Do not set L to be unnecessarily large!

essive Power for Shallow GNNs

Question: How to enhance the expressive power of a GNN, if the
number of GNN layers is small?

Solution: Increase the expressive power within each GNN layer

* In our previous examples, each transformation or aggregation function only
include one linear layer

= We can make aggregation / transformation become a deep neural network!

®
I

If needed, each box could _— (2) Aggregation
include a 3-layer MLP _

&% o & (1) Transformation

ing Outcome

= Generate node embeddings by aggregating neighborhood information
= Key distinctions are in how different approaches aggregate

information across the layers

Acknowledgement: Jure Leskovec, Stanford University 80

