Graph Neural Networks

COMP9312_23T2

Several slides are from Standford CS224W: Machine Learning with Graphs

Recap: Feature Engineering

Given an input graph, extract node, link and graph-level features, learn a model (SVM, neural network, etc.) that maps features to labels.

Recap: Feature Engineering

Node / Edge / Graph

Various metric/methods to design features to represent graph.

Which metric is the best? **Ask machine!**

Representation Learning to Learn the features

Graph Representation Learning alleviates the need to do feature engineering every single time.

Node Embedding

Graph Representation Learning

Representation **node/**edge/graph by features (i.e., vectors)

Represent a graph structure using features is also called **Graph Embedding.**

Node Embeddings

Intuition: Map nodes to d-dimensional embeddings such that similar nodes in the graph are embedded close together

Why Node Embedding

Map nodes into an embedding space

- Similarity of embeddings between nodes indicates their similarity in the network. For example:
	- Both nodes are close to each other (connected by an edge)
- **Encode network information**
- Potentially used for many downstream predictions

With embeddings (features), we can use ML/DL techniques to solve may real problems.

Node Embedding: A Case Study

2D embedding of nodes of the Zachary's Karate Club network:

Image from: Perozzi et al. DeepWalk: Online Learning of Social Representations. *KDD 2014.*

Encoder & Decoder in NLP

UNSW COMP9312_23T2

Embedding Nodes

Encode nodes so that similarity in the embedding space (e.g., dot product) approximates similarity in the graph.

Embedding Nodes

Embedding Nodes

- 1. Encoder maps from nodes to embeddings
- 2. Define a node similarity function (i.e., a measure of similarity in the original network)
- 3. Decoder DEC maps from embeddings to the similarity score
- 4. Optimize the parameters of the encoder so that

similarity
$$
(u, v) \approx \mathbf{z}_v^T \mathbf{z}_u
$$

in the original network

Similarity of the embedding

 $DEC(Z_v, Z_u) = Z_v^T Z_u$

Two Key Components

■ **Encoder:** maps each node to a low-dimensional vector

 $ENC(v) = z_v$ embedding node in the input graph d-dimensional

¡ **Similarity function:** specifies how the relationships in vector space map to the relationships in the original network

similarity
$$
(u, v) \approx \mathbf{z}_{v}^{T} \mathbf{z}_{u}
$$
 Decoder

Similarity of u and v in the original network

dot product between node embeddings

UNSW COMP9312_23T2

"Shallow" Encoding

Simplest encoding approach: encoder is just an embedding-lookup.

$$
ENC(v) = z_v = Z \cdot v
$$

matrix, each column is a node embedding [what we learn /optimize] $Z \in \mathbb{R}^{d \times |\mathcal{V}|}$

$$
\nu\in\mathbb{I}^{|\mathcal{V}|}
$$

indicator vector, all zeroes except a one in column indicating node *v*

"Shallow" Encoding

Simplest encoding approach: encoder is just an embedding-lookup embedding vector for a specific node

Dimension/size of embeddings embedding matrix $\mathbf{Z} =$

one column per node

Framework Summary

- ¡ **Encoder + Decoder Framework**
	- Shallow encoder: embedding lookup
	- Parameters to optimize: **Z** which contains node embeddings z_{11} for all nodes $u \in V$
	- We will cover deep encoders (GNNs) in the future
	- § **Decoder:** based on node similarity.
	- **Objective:** maximize $\mathbf{z}_{\nu}^{\mathrm{T}} \mathbf{z}_{\nu}$ for node pairs (u, v) that are **similar**

Decoder: Node Similarity

- Key choice of methods is **how they define node similarity.**
- Should two nodes have a similar embedding if they...
	- are linked?
	- share neighbors?
	- have similar "structural roles"?
- We will now learn node similarity definition that uses random walks, and how to optimize embeddings for such a similarity measure.

Representative methods: DeepWalk, node2vec

Other important things

- ¡ This is **unsupervised/self-supervised** way of learning node embeddings
	- We are **not** utilizing node labels
	- We are **not** utilizing node features
	- § The goal is to directly estimate a set of coordinates (i.e., the embedding) of a node so that some aspect of the network structure (captured by DEC) is preserved
- ¡ These embeddings are **task independent**
	- They are not trained for a specific task but can be used for any task.

Limitations of shallow embedding

§(||) **parameters are needed**:

- No sharing of parameters between nodes
- **Every node has its own unique embedding**

§ **Inherently "transductive**":

§Cannot generate embeddings for nodes that are not seen during training

§**Do not incorporate node features**:

• Many graphs have features that we can and should leverage

Deep Encoding

Deep Encoding

We will now discuss deep methods based on **graph neural networks (GNNs):**

multiple layers of non-linear transformations based on graph structure $ENC(v) =$

Modern ML Toolbox

UNSW COMP9312_23T2

Deep Graph Encoders

UNSW COMP9312_23T2

But networks are far more complex!

■ Arbitrary size and complex topological structure (i.e., no spatial locality like grids)

- No fixed node ordering or reference point
- Often dynamic and have multimodal features

Tasks on Networks

Tasks we will be able to solve:

- **Node classification**
	- Predict a type of a given node
- Link prediction
	- **Predict whether two nodes are linked**
- Community detection
	- **Identify densely linked clusters of nodes**
- **Network similarity**
	- How similar are two (sub)networks

Setup

¡**Assume we have a graph :**

- § is the **vertex set**
- A is the **adjacency matrix** (assume binary)
- $X \in \mathbb{R}$: $m \times |V|$ is a matrix of **node features**
- $v:$ a node in $V: N(v):$ the set of neighbors of $v.$

§**Node features:**

- Social networks: User profile, User image
- §When there is no node feature in the graph dataset:
	- **Indicator vectors (one-hot encoding of a node)**
	- Vector of constant $1: [1, 1, ..., 1]$

A Naïve Approach

I Join adjacency matrix and features ■ Feed them into a deep neural net:

E Issues with this idea:

- \bullet $O(|V|)$ parameters
- Not applicable to graphs of different sizes
- Sensitive to node ordering

Graph Convolutional Networks

CNN on an image:

Goal is to generalize convolutions beyond simple lattices Leverage node features/attributes (e.g., text, images)

Grid

 $y_i = w_1 x_{i,1} + \cdots + w_4 x_{i,4}$

Talk on Deep learning on graphs: successes, challenges by Michael Bronstein

UNSW COMP9312_23T2

Talk on Deep learning on graphs: successes, challenges by Michael Bronstein

UNSW COMP9312_23T2

- " Constant number of neighbors
- " Fixed ordering of neighbors
- " Different number of neighbors
- " No ordering of neighbors

Graphs look like this

1. No fixed notion of locality or sliding window on the graph

2. Graph is permutation invariant

Convolutional layer with 3x3 filter

Idea: transform information at the neighbors and combine it:

- **Transform "messages"** h_i from neighbors: $W_i h_i$
- **Add them up:** $\sum_i W_i h_i$

A Computation Graph

Determine node computation graph

Propagate and transform information

 \overline{t}

aggregator

aggregator₂

Learn how to propagate information across the graph to compute node features

Aggregate Neighbors

Key idea: Generate node embeddings based on **local network neighborhoods**

Aggregate Neighbors

Intuition: Nodes aggregate information from their neighbors using neural networks

Aggregate Neighbors

Intuition: Network neighborhood defines a computation graph

Every node defines a computation graph based on its neighborhood!

INPUT GRAPH

Deep: Many Layers

- ¡Model can be of arbitrary depth:
	- Nodes have embeddings at each layer
	- **Layer-0 embedding of node u is its input feature,** x_u
	- **E** Layer- k embedding gets information from nodes that are K hops away

Neighborhood Aggregation

Neighborhood aggregation: Key distinctions are in how different approaches aggregate information across the layers

Neighborhood Aggregation

Basic approach: Average information from neighbors and apply a **neural network**

A GNN Layer

GNN Layer = Message + Aggregation

- **Different instantiations under this perspective**
- **GCN, GraphSAGE, GAT, …**

A Single GNN Layer

Idea of a GNN Layer:

• Compress a set of vectors into a single vector

Message Computation

• (1) Message computation

- $$ **Message function:**
	- **Intuition:** Each node will create a message, which will be sent to other nodes later
	- **Example:** A Linear layer $\mathbf{m}_u^{(l)} = \mathbf{W}^{(l)} \mathbf{h}_u^{(l-1)}$

 \blacksquare Multiply node features with weight matrix $\mathbf{W}^{(l)}$

Message Aggregation

• (2) Aggregation

Intuition: Each node will aggregate the messages from node v 's neighbors

$$
\mathbf{h}_{v}^{(l)} = \text{AGG}^{(l)}\left(\left\{\mathbf{m}_{u}^{(l)}, u \in N(v)\right\}\right)
$$

Example: Sum(\cdot), Mean(\cdot) or Max(\cdot) aggregator

$$
\mathbf{h}_{\nu}^{(l)} = \text{Sum}(\{\mathbf{m}_{\nu}^{(l)}, u \in N(\nu)\})
$$

Message Aggregation Issue

- **Issue:** Information from node v itself could get lost
	- Computation of $\mathbf{h}_n^{(l)}$ does not directly depend on $\mathbf{h}_n^{(l-1)}$
- **Solution:** Include $h_y^{(l-1)}$ when computing $h_y^{(l)}$
	- \blacksquare (1) Message: compute message from node v itself
		- **Usually, a different message computation** will be performed

a $\mathbf{m}_v^{(l)} = \mathbf{W}^{(l)} \mathbf{h}_v^{(l-1)}$ **a** $\mathbf{m}_v^{(l)} = \mathbf{B}^{(l)} \mathbf{h}_v^{(l-1)}$

- (2) Aggregation: After aggregating from neighbors, we can aggregate the message from node v itself
	- " Via concatenation or summation

Then aggregate from node itself

\n
$$
\mathbf{h}_{\nu}^{(l)} = \text{CONCAT}\left(\text{AGG}\left(\{\mathbf{m}_{u}^{(l)}, u \in N(\nu)\}\right), \mathbf{m}_{\nu}^{(l)}\right)
$$
\nFirst aggregate from neighbors

A Single GNN Layer

• Putting things together:

- (1) Message: each node computes a message $\mathbf{m}_u^{(l)} = \text{MSC}^{(l)}\left(\mathbf{h}_u^{(l-1)}\right), u \in \{N(v) \cup v\}$
- (2) Aggregation: aggregate messages from neighbors $\mathbf{h}_{v}^{(l)} = \text{AGG}^{(l)}\left(\left\{\mathbf{m}_{u}^{(l)}, u \in N(v)\right\}, \mathbf{m}_{v}^{(l)}\right)$
- Nonlinearity (activation): Adds expressiveness
	- Often written as $\sigma(\cdot)$: ReLU(\cdot), Sigmoid(\cdot), ...
	- " Can be added to message or aggregation

Activation (Non-linearity)

- **Rectified linear unit (ReLU)**
	- $ReLU(\mathbf{x}_i) = max(\mathbf{x}_i, 0)$
	- Most commonly used
- Sigmoid

$$
\sigma(\mathbf{x}_i) = \frac{1}{1 + e^{-\mathbf{x}_i}}
$$

Used only when you want to restrict the range of your embeddings

Parametric ReLU $\mathcal{L}_{\mathcal{A}}$

- $PReLU(\mathbf{x}_i) = max(\mathbf{x}_i, 0) + a_i min(\mathbf{x}_i, 0)$
	- a_i is a trainable parameter
- **Empirically performs better than ReLU**

The Maths: Deep Encoder

Basic approach: Average neighbor messages and apply a neural network Initial 0-th layer embeddings are

equal to node features embedding of $h_{\nu}^{0} = x_{\nu}$ v at layer l $\frac{h_u^{(l)}}{|N(v)|} + B_l \overline{h_v^{(l)}}$, $\forall l \in \{0, ..., L-1\}$ $h_{\nu}^{(l+1)}$ $z_v = h_v^{(L)}$ Average of neighbor's **Total number** previous layer embeddings of layers Embedding after I Non-linearity layers of neighborhood $(e.g., ReLU)$ aggregation

Model Parameters

We can feed these **embeddings into any loss function** and run SGD to **train the weight parameters**

- h_v^l :the hidden representation of node v at layer l
- \blacksquare W_k :weight matrix for neighborhood aggregation
- \blacksquare B_k : weight matrix for transforming hidden vector of self

Matrix Formulation

- Many aggregations can be performed efficiently by (sparse) matrix operations
- **Let** $H^{(l)} = [h_{1(l)}^{(l)} ... h_{|V|}^{(l)}]^T$
 Then: $\sum_{u \in N_v} h_u^{(l)} = A_{v,:}^{\text{(l)}} H^{(l)}$
-
- Let D be diagonal matrix where $D_{v,v} = \text{Deg}(v) = |N(v)|$
	- The inverse of $D: D^{-1}$ is also diagonal: $D_{v,v}^{-1} = 1/|N(v)|$
- Therefore,

Matrix of hidden embeddings H^{k-1}

Matrix Formulation

• Re-writing update function in matrix form:

 $H^{(l+1)} = \sigma(\tilde{A}H^{(l)}W_l^{\mathrm{T}} + H^{(l)}B_l^{\mathrm{T}})$ where $\tilde{A} = D^{-1}A$ $H^{(l)} = [h_1^{(l)} \dots h_{|V|}^{(l)}]^T$

- Red: neighborhood aggregation
- Blue: self transformation
- In practice, this implies that efficient sparse matrix multiplication can be used (\tilde{A} is sparse)
- **Note:** not all GNNs can be expressed in matrix form, when $\mathcal{C}^{\mathcal{A}}$ aggregation function is complex

 $H^{(l+1)} = \sigma(\tilde{A}H^{(l)}W_I^{\mathrm{T}} + H^{(l)}B_I^{\mathrm{T}})$

Compute the output of the first graph convolutional layer based on the above formula

0.20 0.60 $0.30 -0.40$ 0.40 0.30 $-0.20 -0.60$ 0.20 -0.60 $0.50 - 0.30$ $-0.40\ 0.20$ $0.20 - 0.40$ $H_0 =$ 0.70 -0.90 $0.10 - 0.50$ 0.30 0.50 $-0.30 -0.70$ -0.60 0.20 -0.80 0.90 -0.10 0.70 $0.10 - 0.90$

$$
W^0 = \begin{bmatrix} 1 & 0 & 0 & 0 \\ 1 & 1 & 0 & 0 \\ 1 & 1 & 1 & 0 \\ 1 & 1 & 1 & 1 \end{bmatrix} B^0 = \begin{bmatrix} 1 & 0 & 0 & 1 \\ 1 & 0 & 1 & 0 \\ 0 & 0 & 1 & 1 \\ 1 & 0 & 1 & 0 \end{bmatrix}
$$

$$
H^{(l+1)} = \sigma \left(\tilde{A}\right) H^{(l)} W_l^{\mathrm{T}} + H^{(l)} B_r^{\mathrm{T}})
$$

The matrix D^{-1} :

Adjacent matrix A:

The matrix $D^{-1}A$:

UNSW COMP9312_23T2

11

Example $H^{(l+1)} = \sigma(\tilde{A}H)^{(l)}W_l^{\mathrm{T}} + H^{(l)}B_l^{\mathrm{T}}$

Matrix H^0 :

Matrix $D^{-1}A$:

Matrix $D^{-1}AH$:

UNSW COMP9312_23T2

 $H^{(l+1)} = \sigma(\tilde{A}H^{(l)}W_l^{\mathrm{T}} + H^{(l)}B_l^{\mathrm{T}})$

Matrix B^0 :

Matrix H^0 :

Matrix HB^T : $[[-0.2 \ 0.5 \ -0.1 \ 0.5]$ $[-0.2 \t 0.2 \t -0.8 \t 0.2]$ $[-0.1 \t 0.7 \t 0.2 \t 0.7]$ $[-0.8 -0.2 -0.2 -0.2]$ $[0.2 0.8 -0.4 0.8]$ $[1. 0. 0.4 0.]$ $[0.1 \t1.1 \t-0.6 \t1.1]$ $[-1, 0, -0.8 0,]]$

 $H^{(l+1)} = \sigma(AH^{(l)}W_l^{\mathrm{T}} + H^{(l)}B_l^{\mathrm{T}})$

Matrix $D^{-1}AHW^{T}$: Matrix HB^{T} :

Matrix $D^{-1}AHW^T + HB^T$:

Matrix $D^{-1}AHW^{T} + HB^{T}$:

Matrix $\sigma(D^{-1}AHW^T + HB^T)$:

UNSW COMP9312_23T2

Train a GNN

- Node embedding z_v is a function of input graph
- **Example 7 Supervised setting:** we want to minimize the

 $\textsf{loss} \mathcal{L}$:

Θ $\min \mathcal{L}(\mathbf{y}, f(\mathbf{z}_v))$

■ y: node label

• $\mathcal L$ could be L2 if $\mathbf y$ is real number, or cross entropy if $\mathbf y$ is categorical ¡ **Unsupervised setting:**

- §No node label available
- §**Use the graph structure as the supervision!**

Supervised Training

Directly train the model for a supervised task (e.g., node classification)

Supervised Training

Directly train the model for a supervised task (e.g., node classification)

- Use cross entropy loss

Unsupervised Training

¡ **"Similar" nodes have similar embeddings**

$$
\mathcal{L} = \sum_{z_u, z_v} \text{CE}(y_{u,v}, \text{DEC}(z_u, z_v))
$$

- Where $y_{u,v}$ 1 = when node u and v are **similar**
- \blacksquare CE is the cross entropy
- DEC is the decoder such as inner product
- **Node similarity** can be anything from previous lectures, e.g., a loss based on:
	- **Random walks** (node2vec, DeepWalk, struc2vec)
	- § **Node proximity in the graph**

Model Design: Overview

Model Design: Overview

Model Design: Overview

Inductive Capability

¡ **The same aggregation parameters are shared for all nodes:**

• The number of model parameters is sublinear in || and we can **generalize to unseen nodes**!

Inductive Capability: New Graphs

Inductive node embedding \Box Generalize to entirely unseen graphs

E.g., train on protein interaction graph from model organism A and generate embeddings on newly collected data about organism B

Inductive Capability: New Nodes

- Many application settings constantly encounter previously unseen nodes:
	- E.g., Reddit, YouTube, Google Scholar
- ¡ Need to generate new embeddings "on the fly"

Stacking GNN Layers

How to connect GNN layers into a GNN? 1. Stack layers sequentially

Stacking GNN Layers

- **EXAMPLE How to construct a Graph Neural Network?**
	- **The standard way:** Stack GNN layers sequentially
	- **Input:** Initial raw node feature \mathbf{x}_v
	- **Output:** Node embeddings $\mathbf{h}_{v}^{(L)}$ after L GNN layers

An Over-smoothing Problem

- ¡ **The Issue of stacking many GNN layers**
	- §GNN suffers from **the over-smoothing problem**
- ¡ **The over-smoothing problem: all the node embeddings converge to the same value**
	- §This is bad because we **want to use node embeddings to differentiate nodes**
- ¡**Why does the over-smoothing problem happen?**

Receptive Field of a GNN

- **Executive field:** the set of nodes that determine the embedding of a node of interest
	- In a K-layer GNN, each node has a receptive field of K-hop **neighborhood**

Receptive Field of a GNN

¡**Receptive field overlap for two nodes**

§**The shared neighbors quickly grows** when we increase the number of hops (num of GNN layers)

1-hop neighbor overlap Only 1 node

2-hop neighbor overlap About 20 nodes

3-hop neighbor overlap Almost all the nodes!

UNSW COMP9312_23T2

Receptive Field &Over-smoothing

- ¡ **We can explain over-smoothing via the notion of receptive field**
	- §**The embedding of a node is determined by its receptive field**
		- §If two nodes **have highly-overlapped receptive fields, then their embeddings are highly similar**
	- Stack many GNN layers → nodes will have highly- overlapped **receptive fields** \rightarrow **node embeddings will be highly similar** \rightarrow **suffer from the over- smoothing problem**
- **Next:** how do we overcome over-smoothing problem?

Over-smoothing

Typical results of node classification accuracy on CoautorCS dataset

Design GNN Layer Connectivity

- ¡ **What do we learn from the over-smoothing problem?**
- ¡ **Lesson: Be cautious when adding GNN layers**
	- Unlike neural networks in other domains (CNN for image classification), **adding more GNN layers do not always help**
	- § **Step 1: Analyze the necessary receptive field** to solve your problem. E.g., by computing the diameter of the graph
	- Step 2: Set number of GNN layers L to be a bit more than the receptive field we like. **Do not set to be unnecessarily large**!

Expressive Power for Shallow GNNs

- ¡ **Question:** How to enhance the expressive power of a GNN, if the number of GNN layers is small?
- ¡ **Solution:** Increase the expressive power **within each GNN layer**
	- **In our previous examples, each transformation or aggregation function only** include one linear layer
	- § We can **make aggregation / transformation become a deep neural network**!

UNSW COMP9312

Learning Outcome

- Generate node embeddings by aggregating neighborhood information
- Key distinctions are in how different approaches aggregate

information across the layers