Graph Neural Metworks (cont)

COMP9312_23T2

Several slides are from Standford CS224W: Machine Learning with Graphs

GraphSage & GAT

Classical GNN Layers: GraphSAGE

$$
\mathbf{h}_{v}^{(l)} = \sigma \bigg(\mathbf{W}^{(l)} \cdot \text{CONCAT} \bigg(\mathbf{h}_{v}^{(l-1)}, \text{AGG} \bigg(\big\{ \mathbf{h}_{u}^{(l-1)}, \forall u \in N(v) \big\} \bigg) \bigg)
$$

- How to write this as Message + Aggregation?
	- Message is computed within the $AGG(\cdot)$
	- Two-stage aggregation

\n- Stage 1: Aggregate from node neighbors
\n- $$
\mathbf{h}_{N(v)}^{(l)} \leftarrow \text{AGG}\left(\left\{\mathbf{h}_{u}^{(l-1)}, \forall u \in N(v)\right\}\right\}
$$
\n

Stage 2: Further aggregate over the node itself

$$
\mathbf{h}_{v}^{(l)} \leftarrow \sigma\left(\mathbf{W}^{(l)} \cdot \text{CONCAT}(\mathbf{h}_{v}^{(l-1)}, \mathbf{h}_{N(v)}^{(l)})\right)
$$

Node Neighborhood Sampling

¡ **Previously:**

¡ **New idea:** (**Randomly**) sample a node's neighborhood for message passing

Neighborhood Sampling Example

- ¡ **For example, we can randomly choose 2 neighbors to pass messages in a given layer**
	- \blacksquare Only nodes B and D will pass messages to A

Neighborhood Sampling Example

- ¡ **In the next layer when we compute the embeddings, we can sample different neighbors**
	- \blacksquare Only nodes C and D will pass messages to A

Neighborhood Sampling Example

- ¡ **In expectation, we get embeddings similar to the case where all the neighbors are used**
	- § **Benefits:** Greatly **reduces** computational cost
	- And in practice it works great!

GraphSAGE: L₂ Normalization

\bullet ℓ_2 Normalization:

• Optional: Apply ℓ_2 normalization to $\mathbf{h}_n^{(l)}$ at every layer

•
$$
\mathbf{h}_{v}^{(l)} \leftarrow \frac{\mathbf{h}_{v}^{(l)}}{\|\mathbf{h}_{v}^{(l)}\|_{2}} \ \forall v \in V \text{ where } ||u||_{2} = \sqrt{\sum_{i} u_{i}^{2}} \ (\ell_{2}\text{-norm})
$$

- Without ℓ_2 normalization, the embedding vectors have different scales (ℓ_2 -norm) for vectors
- In some cases (not always), normalization of embedding results in performance improvement
- After ℓ_2 normalization, all vectors will have the same ℓ_2 -norm

Classical GNN Layers: GAT(1)

$$
\mathbf{h}_{v}^{(l)} = \sigma(\sum_{u \in N(v)} \alpha_{vu} \mathbf{W}^{(l)} \mathbf{h}_{u}^{(l-1)})
$$

Attention weights

- In GCN / GraphSAGE
	- \bullet $\alpha_{vu} = \frac{1}{|N(v)|}$ is the weighting factor (importance) of node u 's message to node v
	- $\blacksquare \Rightarrow \alpha_{vu}$ is defined explicitly based on the structural properties of the graph (node degree)
	- $\blacksquare \Longrightarrow$ All neighbors $u \in N(v)$ are equally important to node ν

Classical GNN Layers: GAT(2)

¡ **Graph Attention Networks**

$$
\mathbf{h}_{v}^{(l)} = \sigma(\sum_{u \in N(v)} \alpha_{vu} \mathbf{W}^{(l)} \mathbf{h}_{u}^{(l-1)})
$$

Attention weights

Not all node's neighbors are equally important

- Attention is inspired by cognitive attention.
- **The attention** α_{vu} focuses on the important parts of the input data and fades out the rest.
	- **Idea:** the NN should devote more computing power on that small but important part of the data.
	- Which part of the data is more important depends on the context and is learned through training.

Graph Attention Networks

Can we do better than simple neighborhood aggregation?

Can we let weighting factors $\alpha_{\nu\mu}$ to be learned?

- **Goal:** Specify arbitrary importance to different
- neighbors of each node in the graph
Idea: Compute embedding $h_v^{(l)}$ of each node in the graph following an attention strategy:
	- Nodes attend over their neighborhoods' message
	- Implicitly specifying different weights to different nodes in a neighborhood

Attention Mechanism (1)

- Let $\alpha_{\nu\mu}$ be computed as a byproduct of an attention mechanism a :
	- (1) Let a compute **attention coefficients** e_{yy} across pairs of nodes u, v based on their messages:

$$
e_{vu} = a(\mathbf{W}^{(l)}\mathbf{h}_u^{(l-1)}, \mathbf{W}^{(l)}\mathbf{h}_v^{(l-1)})
$$

• e_{vu} indicates the importance of u's message to node v

Attention Mechanism (2)

- Normalize e_{vu} into the final attention weight α_{vu}
	- Use the **softmax** function, so that $\sum_{u \in N(v)} \alpha_{vu} = 1$: $\exp(e_{vu})$

$$
\Sigma_{k \in N(v)} \exp(e_{vk})
$$

■ Weighted sum based on the final attention weight

 α_{vu}

$$
\mathbf{h}_{v}^{(l)} = \sigma(\sum_{u \in N(v)} \alpha_{vu} \mathbf{W}^{(l)} \mathbf{h}_{u}^{(l-1)})
$$
\n
$$
\mathbf{w}_{qB}^{(l)} = \sigma(\alpha_{AB} \mathbf{W}^{(l)} \mathbf{h}_{B}^{(l-1)} + \alpha_{AC} \mathbf{W}^{(l)} \mathbf{h}_{C}^{(l-1)})
$$
\n
$$
\mathbf{h}_{A}^{(l)} = \sigma(\alpha_{AB} \mathbf{W}^{(l)} \mathbf{h}_{B}^{(l-1)} + \alpha_{AC} \mathbf{W}^{(l)} \mathbf{h}_{C}^{(l-1)})
$$
\n
$$
\alpha_{AD} \mathbf{W}^{(l)} \mathbf{h}_{D}^{(l-1)}
$$
\n
$$
\alpha_{AD} \mathbf{W}^{(l)} \mathbf{h}_{D}^{(l-1)}
$$
\n
$$
\mathbf{h}_{C}^{(l-1)}
$$

- Parameters of a are trained jointly:
	- " Learn the parameters together with weight matrices (i.e., other parameter of the neural net $\mathbf{W}^{(l)}$) in an end-to-end fashion

Attention Mechanism (3)

- **Multi-head attention:** Stabilizes the learning $\mathcal{L}_{\mathcal{A}}$ process of attention mechanism
	- " Create multiple attention scores (each replica with a different set of parameters): ${\bf h}_{\nu}^{(l)}[1] = \sigma(\sum_{u \in N(\nu)} \alpha_{\nu}^1 {\bf W}^{(l)} {\bf h}_{\nu}^{(l-1)})$ $\mathbf{h}_{v}^{(l)}[2] = \sigma(\sum_{u \in N(v)} \alpha_{vu}^2 \mathbf{W}^{(l)} \mathbf{h}_{u}^{(l-1)})$ $\mathbf{h}_{v}^{(l)}[3] = \sigma(\sum_{u \in N(v)} \alpha_{vu}^{3} \mathbf{W}^{(l)} \mathbf{h}_{u}^{(l-1)})$
	- " Outputs are aggregated:
		- By concatenation or summation
		- $\mathbf{h}_n^{(l)} = \text{AGG}(\mathbf{h}_n^{(l)}[1], \mathbf{h}_n^{(l)}[2], \mathbf{h}_n^{(l)}[3])$

Benefits of Attention Mechanism

- ¡ **Key benefit:** Allows for (implicitly) specifying **different importance values** () **to different neighbors**
- ¡ **Computationally efficient**:
	- § Computation of attentional coefficients can be parallelized across all edges of the graph
	- § Aggregation may be parallelized across all nodes
- **Storage efficient:**
	- § Sparse matrix operations do not require more than
		- $O(V + E)$ entries to be stored
	- **Fixed** number of parameters, irrespective of graph size
- ¡ **Localized**:
	- § Only **attends over local network neighborhoods**
- ¡ **Inductive capability**:
	- § It is a shared *edge-wise* mechanism
	- It does not depend on the global graph structure

GAT: Cora Citation Net

Attention mechanism can be used with many different graph neural network models

In many cases, attention leads to performance gains

¡ **t-SNE plot of GAT-based node embeddings:**

- Node color: 7 publication classes
- nodes *i* and *j*, across eight attention heads, $\sum_{k} (\alpha_{ij}^{k} + \alpha_{ji}^{k})$ Edge thickness: Normalized attention coefficients between

UNSW COMP9312_23T2

GNN Layer in Practice

- ¡ **In practice, these classic GNN layers are a great starting point**
	- We can often get better performance by considering a general GNN layer design
	- Concretely, we can include modern deep learning modules that proved to be useful in many domains

GNN Layer in Practice

Many modern deep learning modules can be incorporated into a GNN layer

§ **Batch Normalization:**

- Stabilize neural network training
- § **Dropout:**
	- Prevent overfitting
- § **Attention/Gating:**
	- Control the importance of a message
- § **More:**
	- Any other useful deep learning modules

A suggested GNN Layer

Dropout

- **Goal**: Regularize a neural net to prevent overfitting.
- ¡ **Idea**:
	- **During training**: with some probability p , randomly set neurons to zero (turn off)
	- § **During testing:** Use all the neurons for computation

Dropout for GNNs

- In GNN, Dropout is applied to **the linear layer in the message function**
	- § **A simple message function with linear** $\mathbf{m}_{11}^{(l)} = \mathbf{W}^{(l)} \mathbf{h}_{11}^{(l-1)}$ **layer:**

(2) Aggregation (1) Message \sum

Expressive Power for Shallow GNNS

- ¡ **How to make a shallow GNN more expressive?**
- **Solution:** Add layers that do not pass messages
	- § A GNN does not necessarily only contain GNN layers
		- E.g., we can add **MLP layers** (applied to each node) before and after GNN layers, as **pre-process layers** and **post-process layers**

Pre-processing layers: Important when encoding node features is necessary. E.g., when nodes represent images/text

Post-processing layers: Important when reasoning / transformation over node embeddings are needed E.g., graph classification, knowledge graphs

In practice, adding these layers works great!

Design GNN Layer Connectivity

- ¡ **What if my problem still requires many GNN layers?**
- ¡ **Lesson: Add skip connections in GNNs**
	- § **Observation from over-smoothing:** Node embeddings in earlier GNN layers can sometimes better differentiate nodes
	- **Solution:** We can increase the impact of earlier layers on the final node embeddings, **by adding shortcuts in GNN**

Skip Connections

- ¡ **Why do skip connections work?**
	- § **Intuition:** Skip connections create **a mixture of models**
	- N skip connections \rightarrow 2^N possible paths
	- Each path could have up to N modules
	- § We automatically get **a mixture of shallow GNNs and deep GNNs**

(a) Conventional 3-block residual network

All the possible paths:

 $2 * 2 * 2 = 2^3 = 8$

GCN with Skip Connections

A standard GCN layer

$$
\mathbf{h}_{\nu}^{(l)} = \sigma \left(\sum_{u \in N(\nu)} \mathbf{W}^{(l)} \frac{\mathbf{h}_{u}^{(l-1)}}{|N(\nu)|} \right)
$$

This is our $F(\mathbf{x})$

A GCN layer with skip connection

$$
\mathbf{h}_{v}^{(l)} = \sigma \left(\sum_{u \in N(v)} \mathbf{W}^{(l)} \frac{\mathbf{h}_{u}^{(l-1)}}{|N(v)|} + \mathbf{h}_{v}^{(l-1)} \right)
$$

$$
F(\mathbf{x}) + \mathbf{x}
$$

Other Skip Connections

■ **Other options:** Directly skip to the last layer ■ The final layer directly **aggregates from the all the node embeddings** in the previous layers

External products of the control of the UNSW COMP9312_23T2

Graph Augmentation (Optional)

Why Augment Graphs

Problems in training a GNN

§ **Features:**

- § The input graph **lacks features**
- § **Graph structure:**
	- **The graph is too sparse** \rightarrow **inefficient message passing**
	- **The graph is too dense** \rightarrow message passing is too costly
	- **The graph is too large** \rightarrow **cannot fit the computational graph into a GPU**

Graph Augmentation Approaches

- **Graph Feature augmentation**
	- The input graph lacks features \rightarrow feature augmentation
- **Graph Structure augmentation**
	- **•** The graph is **too** sparse \rightarrow Add virtual nodes / edges
	- **The graph is too dense** \rightarrow **Sample neighbors when doing message passing**
	- The graph is **too large → Sample subgraphs to compute embeddings**

When might we need feature augmentation?

- ¡ **(1) Input graph does not have node features**
	- This is common when we only have the adj. matrix
- ¡ **Standard approaches:**
- ¡ **a) Assign constant values to nodes ¹**

When might we need feature augmentation?

- ¡ **(1) Input graph does not have node features**
	- **•** This is common when we only have the adj. matrix
- ¡ **Standard approaches:**
- ¡ **b) Assign unique IDs to nodes**
	- § These IDs are converted into **one-hot vectors**

When might we need feature augmentation?

- ¡ **(2) Certain structures are hard to learn by GNN**
- ¡ **Example:** Cycle count feature:
	- Can GNN learn the length of a cycle that v_1 resides in?
	- § **Unfortunately, no**

- ¡ **cannot differentiate which graph it resides in**
	- Because all the nodes in the graph have degree of 2
	- The computational graphs will be the same binary tree
		- v_1 resides in a cycle with length 3

 v_1 resides in a cycle with length 4

 v_1 resides in a cycle with infinite length

The computational graphs for node are always the same

When might we need feature augmentation?

- ¡ **(2) Certain structures are hard to learn by GNN**
- Solution: We can use cycle count as augmented node features

When might we need feature augmentation?

- ¡ **(2) Certain structures are hard to learn by GNN**
- Other commonly used augmented features:
	- **Node** degree
	- § **Clustering coefficient**
	- § **Centrality**
	- § **…**

Add Virtual Nodes/ Edges

- **E** Motivation: Augment sparse graphs
- ¡ **(1) Add virtual edges**
	- **Common approach:** Connect 2-hop neighbors via virtual edges
	- **Intuition:** Instead of using adj. matrix A for GNN computation, use $A + A^2$
	- § **Use cases:** Bipartite graphs
		- **Author-to-papers (they authored)**
		- 2-hop virtual edges make an author-author collaboration graph

Add Virtual Nodes/Edges

- **Motivation:** Augment sparse graphs
- ¡ **(2) Add virtual nodes**
	- The virtual node will connect to all the nodes in the graph
		- Suppose in a sparse graph, two nodes have shortest path distance of 10
		- § After adding the virtual node, **all the nodes will have a distance of two**
			- § **Node A – Virtual node – Node B**
	- § **Benefits:** Greatly **improves message passing in sparse graphs**

INPUT GRAPH

UNSW GOMP9312_23T2