
Graph Neural Networks
(cont)
COMP9312_23T2

Several slides are from Standford CS224W: Machine Learning with Graphs

UNSW COMP9312_23T22

GraphSage & GAT

UNSW COMP9312_23T2

Hamilton et al. Inductive Representation Learning on Large Graphs, NeurIPS 2017

Classical GNN Layers: GraphSAGE

3

UNSW COMP9312_23T2

¡ New idea: (Randomly) sample a node’s neighborhood
for message passing

INPUT GRAPH

TARGET NODE

D

E

F

C

B B

A C

D

A

A

¡ Previously:
§ All the nodes are used for message passing

A C

F

E

A

B

Hamilton et al. Inductive Representation Learning on Large Graphs, NeurIPS 2017

Node Neighborhood Sampling

4

UNSW COMP9312_23T2

TARGET NODE B

C

A

B

 C

A

A

C

E

A

B

F
D

E
D

AINPUT GRAPH

Neighborhood Sampling Example

¡ For example, we can randomly choose 2 neighbors to pass
messages in a given layer
§ Only nodes 𝐵 and 𝐷 will pass messages to 𝐴

5

UNSW COMP9312_23T2

¡ In the next layer when we compute the embeddings, we
can sample different neighbors
§ Only nodes 𝐶 and 𝐷 will pass messages to 𝐴

TARGET NODE B

C
A

F
D

E

INPUT GRAPH

Neighborhood Sampling Example

6

UNSW COMP9312_23T2

¡ In expectation, we get embeddings similar to the case
where all the neighbors are used
§ Benefits: Greatly reduces computational cost
§ And in practice it works great!

INPUT GRAPH

TARGET NODE

D

E

F

C
A

Ying et al. Graph Convolutional Neural Networks for Web-Scale Recommender Systems, KDD 2018

Neighborhood Sampling Example

7

UNSW COMP9312_23T2

GraphSAGE: L2 Normalization

8

UNSW COMP9312_23T2

Classical GNN Layers: GAT(1)

9

UNSW COMP9312_23T2

¡ Graph Attention Networks

Not all node’s neighbors are equally important
§ Attention is inspired by cognitive attention.
§ The attention 𝜶𝒗𝒖	focuses on the important parts of the input data and

fades out the rest.
§ Idea: the NN should devote more computing power on that small but important part of the data.
§ Which part of the data is more important depends on the context and is learned through training.

Classical GNN Layers: GAT(2)

10

UNSW COMP9312_23T2

Graph Attention Networks

Can we do better than simple neighborhood aggregation?

Can we let weighting factors 𝜶𝒗𝒖	to be learned?

[Velickovic et al., ICLR 2018; Vaswani et al., NIPS 2017]

11

UNSW COMP9312_23T2

Attention Mechanism (1)

12

UNSW COMP9312_23T2

Attention Mechanism (2)

13

UNSW COMP9312_23T2

Attention Mechanism (3)

14

UNSW COMP9312_23T2

Benefits of Attention Mechanism
¡ Key benefit: Allows for (implicitly) specifying different importance values (𝜶𝒗𝒖) to different neighbors
¡ Computationally efficient:

§ Computation of attentional coefficients can be parallelized across all edges of the graph
§ Aggregation may be parallelized across all nodes

¡ Storage efficient:
§ Sparse matrix operations do not require more than

𝑂(𝑉 + 𝐸) entries to be stored
§ Fixed number of parameters, irrespective of graph size

¡ Localized:
§ Only attends over local network neighborhoods

¡ Inductive capability:
§ It is a shared edge-wise mechanism
§ It does not depend on the global graph structure

15

UNSW COMP9312_23T2

nodes 𝑖	and 𝑗, across eight attention heads,

Attention mechanism can be used with many
different graph neural network models

In many cases, attention leads to performance
gains

¡ t-SNE plot of GAT-based node embeddings:
§ Node color: 7 publication classes
§ Edge thickness: Normalized attention coefficients between

GAT: Cora Citation Net

16

UNSW COMP9312_23T2

¡ In practice, these classic GNN
layers are a great starting point
§ We can often get better

performance by considering a
general GNN layer design

§ Concretely, we can include
modern deep learning modules
that proved to be useful in many
domains

J. You, R. Ying, J. Leskovec. Design Space of Graph Neural Networks, NeurIPS 2020

A suggested GNN Layer

GNN Layer in Practice

1717

UNSW COMP9312_23T2

J. You, R. Ying, J. Leskovec. Design Space of Graph Neural Networks, NeurIPS 2020

A suggested GNN Layer

GNN Layer in Practice
Many modern deep learning modules can be incorporated into a GNN layer

§ Batch Normalization:
§ Stabilize neural network training

§ Dropout:
§ Prevent overfitting

§ Attention/Gating:
§ Control the importance of a message

§ More:
§ Any other useful deep learning modules

18

UNSW COMP9312_23T2

¡ Goal: Regularize a neural net to prevent overfitting.
¡ Idea:

§ During training: with some probability 𝑝, randomly set
neurons to zero (turn off)

§ During testing: Use all the neurons for computation

Srivastava et al. Dropout: A Simple Way to Prevent Neural Networks from Overfitting, JMLR 2014

Removed neurons

Dropout

Dropout

19

UNSW COMP9312_23T2

¡ In GNN, Dropout is applied to the linear
layer in the message function
§ A simple message function with linear

layer:

(2) Aggregation

(1) Message

Dropout for GNNs

20

UNSW COMP9312_23T2

¡ How to make a shallow GNN more expressive?
¡ Solution: Add layers that do not pass messages

§ A GNN does not necessarily only contain GNN layers
§ E.g., we can add MLP layers (applied to each node) before and after GNN layers,

as pre-process layers and post-process layers

Pre-processing layers: Important when encoding
node features is necessary.
E.g., when nodes represent images/text

Post-processing layers: Important when reasoning /
transformation over node embeddings are needed
E.g., graph classification, knowledge graphs

In practice, adding these layers works great!

Expressive Power for Shallow GNNS

21

UNSW COMP9312_23T2

¡ What if my problem still requires many GNN layers?
¡ Lesson: Add skip connections in GNNs

§ Observation from over-smoothing: Node embeddings in
earlier GNN layers can sometimes better differentiate nodes

§ Solution: We can increase the impact of earlier layers on the
final node embeddings, by adding shortcuts in GNN

Duplicate
into two

branches
Idea of skip connections:
Before adding shortcuts:

𝑭	 𝐱
After adding shortcuts:

𝑭	 𝐱	 +	𝐱
Sum two
branches

He et al. Deep Residual Learning for Image Recognition, CVPR 2015

Design GNN Layer Connectivity

22

UNSW COMP9312_23T2

¡ Why do skip connections work?
§ Intuition: Skip connections create a mixture of models
§ 𝑁	skip connections à 2𝑁	possible paths
§ Each path could have up to 𝑁	modules

Path 1: include this module

Path 2: skip this module

All the possible paths:
2	∗	2	∗	2	=	23	=	8

§ We automatically get a mixture
of shallow GNNs and deep GNNs

Skip Connections

23

Veit et al. Residual Networks Behave Like Ensembles of Relatively Shallow Networks, ArXiv 2016

UNSW COMP9312_23T2

GCN with Skip Connections

2424

UNSW COMP9312_23T2

¡ Other options: Directly
skip to the last layer
§ The final layer directly

aggregates from the all the
node embeddings in the
previous layers

Xu et al. Representation learning on graphs with jumping knowledge networks, ICML 2018

Other Skip Connections

2525

UNSW COMP9312_23T2

Graph Augmentation (Optional)

2626

UNSW COMP9312_23T2

Why Augment Graphs

Problems in training a GNN
§ Features:

§ The input graph lacks features
§ Graph structure:

§ The graph is too sparse à inefficient message passing
§ The graph is too dense à message passing is too costly
§ The graph is too large à cannot fit the computational graph into a GPU

27

UNSW COMP9312_23T2

¡ Graph Feature augmentation
§ The input graph lacks features à feature augmentation

¡ Graph Structure augmentation
§ The graph is too sparse à Add virtual nodes / edges
§ The graph is too dense à Sample neighbors when doing message passing

§ The graph is too large à Sample subgraphs to compute embeddings

Graph Augmentation Approaches

28

UNSW COMP9312_23T2

When might we need feature augmentation?
¡ (1) Input graph does not have node features
§ This is common when we only have the adj. matrix

¡ Standard approaches:
¡ a) Assign constant values to nodes 1

1

1

1

1

1

Features Augmentation on Graphs

29

UNSW COMP9312_23T2

When might we need feature augmentation?

Features Augmentation on Graphs

1

4

3

6

5

¡ (1) Input graph does not have node features

§ This is common when we only have the adj. matrix

¡ Standard approaches:

¡ b) Assign unique IDs to nodes
§ These IDs are converted into one-hot vectors

 2
One-hot vector for node with ID=5

[0, 0, 0, 0, 1, 0]

Total number of IDs = 6

ID = 5

30

UNSW COMP9312_23T2

Constant node feature
1

1 1

1 1

1

One-hot node feature
2

1 3

4 6

5

Expressive power Medium. All the nodes are
identical, but GNN can still learn
from the graph structure

High. Each node has a unique ID,
so node-specific information can
be stored

Inductive learning
(Generalize to
unseen nodes)

High. Simple to generalize to new
nodes: we assign constant
feature to them, then apply our
GNN

Low. Cannot generalize to new
nodes: new nodes introduce new
IDs, GNN doesn’t know how to
embed unseen IDs

Computational
cost

Low. Only 1 dimensional feature High. 𝑂	 𝑉	 dimensional feature,
cannot apply to large graphs

Use cases Any graph, inductive settings
(generalize to new nodes)

Small graph, transductive
settings (no new nodes)

Features Augmentation on Graphs

31

UNSW COMP9312_23T2

When might we need feature augmentation?
¡ (2) Certain structures are hard to learn by GNN
¡ Example: Cycle count feature:
§ Can GNN learn the length of a cycle that 𝑣1 resides in?
§ Unfortunately, no

Features Augmentation on Graphs

𝑣1 	resides in a cycle with length 3

𝑣1 𝑣1

𝑣1 	resides in a cycle with length 4

J. You, J. Gomes-Selman, R. Ying, J. Leskovec. Identity-aware Graph Neural Networks, AAAI 2021

32

UNSW COMP9312_23T2

Features Augmentation on Graphs
¡ 𝒗𝟏	cannot differentiate which graph it resides in

§ Because all the nodes in the graph have degree of 2
§ The computational graphs will be the same binary tree

𝑣 ! 	resides in a cycle
with length 3

𝒗2

𝑣 ! 	resides in a cycle
with length 4

𝑣 ! 	resides in a cycle with infinite length

… …

…

The computational
graphs for node 𝒗𝟏	
are always the same

𝒗𝟏

𝒗1

𝒗1

33

UNSW COMP9312_23T2

Features Augmentation on Graphs

When might we need feature augmentation?
¡ (2) Certain structures are hard to learn by GNN
¡ Solution: We can use cycle count as augmented node features

We start
from cycle
with length 0

Augmented node feature for 𝒗𝟏

[0, 0, 0, 1, 0, 0]
Augmented node feature for 𝒗𝟏

[0, 0, 0, 0, 1, 0]

𝑣1 	resides in a cycle with length 3

𝑣1 𝑣1

𝑣1 	resides in a cycle with length 4

34

UNSW COMP9312_23T2

Features Augmentation on Graphs
When might we need feature augmentation?

¡ (2) Certain structures are hard to learn by GNN
¡ Other commonly used augmented features:
§ Node degree
§ Clustering coefficient
§ Centrality
§ …

35

UNSW COMP9312_23T2

¡ Motivation: Augment sparse graphs
¡ (1) Add virtual edges
§ Common approach: Connect 2-hop neighbors via

virtual edges
§ Intuition: Instead of using adj. matrix 𝐴 for GNN

computation, use 𝐴 + 𝐴2
A

B

C

D

E

§ Use cases: Bipartite graphs
§ Author-to-papers (they authored)
§ 2-hop virtual edges make an author-author

collaboration graph

Add Virtual Nodes/ Edges

36

Authors Papers

UNSW COMP9312_23T2

The virtual node

37

Add Virtual Nodes/Edges

¡ Motivation: Augment sparse graphs
¡ (2) Add virtual nodes
§ The virtual node will connect to all the nodes in the graph

§ Suppose in a sparse graph, two nodes have shortest path distance of 10
§ After adding the virtual node, all the nodes will have a distance of two

§ Node A – Virtual node – Node B

§ Benefits: Greatly improves message passing in sparse graphs

37

