Graph Neural Networks
(cont)

COMP9312_23T2

Several slides are from Standford CS224W: Machine Learning with Graphs

e & GAT

Inductive Representation Learning on Large Graphs

cal GNN Layers: GraphSAGE

h,(f) — g (w(l) . CONCAT (hg‘”,AGG ({hf}‘“,\m € N(V)})>)

= How to write this as Message + Aggregation?
= Message is computed within the AGG(-)
= Two-stage aggregation
= Stage 1: Aggregate from node neighbors
hY « AGG ({hg_l),‘v’u € N(v)})

N(v)

= Stage 2: Further aggregate over the node itself

h$’ « o (W® - CONCAT(hS ™, h{y,))

Inductive Representation Learning on Large Graphs

Neighborhood Sampling

= Previously:
= All the nodes are used for message passing

A‘:...A
TARGEI NODE e ® ®
A .

N “.‘
INPUTGRAPH . . e, ‘

= New idea: (Randomly) sample a node’s neighborhood

for message passing

borhood Sampling Example

For example, we can randomly choose 2 neighbors to pass
messages in a given layer
" Only nodes B and D will pass messages to A

TARGET NODE ' A‘: ‘

%
& , o .

N ". .
INPUTGRAPH . . e, .

borhood Sampling Example

In the next layer when we compute the embeddings, we
can sample different neighbors
= Only nodes C and D will pass messages to A

TARGET NODE

<&
> L

INPUT GRAPH

Graph Convolutional Neural Networks forWeb-Scale Recommender Systems

borhood Sampling Example

In expectation, we get embeddings similar to the case
where all the neighbors are used

= Benefits: Greatly reduces computational cost

* And in practice it works great!

TARGET NODE

INPUT GRAPH

SAGE: L, Normalization

= £, Normalization:

= Optional: Apply £, normalization to hl(,l) at every layer

0]
h ,
o hg) ¢ Hh('{)u Vv € V where |lull, = [X;uf (£,-norm)
vz

Without £, normalization, the embedding vectors have
different scales (£,-norm) for vectors

" In some cases (not always), normalization of embedding
results in performance improvement

= After £, normalization, all vectors will have the same
£,-norm

ical GNN Layers: GAT(1)

[[—1
h1(;) = U(ZueN(v) avuw(l)hgt))
Attention weights

= In GCN / GraphSAGE

1
| a o
v IN@)
of node u’s message to node v

is the weighting factor (importance)

" = a,,, is defined explicitly based on the
structural properties of the graph (node degree)

= = All neighbors u € N(v) are equally important
to node v

ical GNN Layers: GAT(2)

Graph Attention Networks

l -1
by = 0(Suen)l @uWPhy)

Attention weights

Not all node’s neighbors are equally important

= Attention is inspired by cognitive attention.

" The attention a,, focuses on the important parts of the input data and
fades out the rest.

= |ldea: the NN should devote more computing power on that small but important part of the data.
= Which part of the data is more important depends on the context and is learned through training.

Attention Networks

Can we do better than simple neighborhood aggregation?

Can we let weighting factors a,, to be learned?

= Goal: Specify arbitrary importance to different
neighbors of each node in thel§raph

= ldea: Compute embedding h,(, of each node in the
graph following an attention strategy:
* Nodes attend over their neighborhoods’ message

= Implicitly specifying different weights to different nodes
in a neighborhood

11

tion Mechanism (1)

= Let a,, be computed as a byproduct of an
attention mechanism a:

" (1) Let a compute attention coefficients e, across
pairs of nodes u, v based on their messages:

evu = a(WOhy ™V, WOR, ™)
" e, indicates the importance of u’'s message to node v

esg = a(W(l)hg_l),W(l)hg_l))

12

tion Mechanism (2)

* Normalize ¢, into the final attention weight a,,,,
* Use the softmax function, so that), ey () @ = 1

P exp(eyy)
vu —
Zkezv(v) exp(eyi)
" Weighted sum based on the final attention weight
'y = Parameters of a are trained jointly:
OB N (1-1) " Learn the parameters together with weight matrices (i.e.,
hv = J(ZuEN(v) avuw()hu) other parameter of the neural net W(l)) in an end-to-end

I fashion
Weighted sum using a4z, @40, 4p:
h = (a2, WOh$ P +a,c WORI s
aADW(Dhg_l))

= Multi-head attention: Stabilizes the learning

tion Mechanism (3)

process of attention mechanism

" Create multiple attention scores (each replica
with a different set of parameters):

h{’
h®

O

1
2]
3] =

= 0(Cuen) aqu(l)h(l Dy
— J(ZuEN(v) avuw(l)h(l 1))

- U(ZuEN(v) avuw(l)h(l 1))

" Qutputs are aggregated:
= By concatenation or summation
o h1(;l)

= AGG(hY[1],h{V[2], W [3])

14

fits of Attention Mechanism

Key benefit: Allows for (implicitly) specifying different importance values (ay) to different neighbors

Computationally efficient:
= Computation of attentional coefficients can be parallelized across all edges of the graph
= Aggregation may be parallelized across all nodes

Storage efficient:
= Sparse matrix operations do not require more than

O(V + E) entries to be stored
* Fixed number of parameters, irrespective of graph size

Localized:
= Only attends over local network neighborhoods

Inductive capability:
= |tis a shared edge-wise mechanism

= |t does not depend on the global graph structure

15

Method Cora
. MLP 55.1%
» ??f? ManiReg (Belkin et al., 2006) 59.5%
- e .’ ° “ Qh.\’b (’ . L
% Y oo 3% 20 S SemiEmb (Weston et al., 2012) 59.0%
SegreR RE e LP (Zhu et al, 2003) 68.0%
S i DeepWalk (Perozzi et al., 2014) 67.2%
& e RO S b ICA (Lu & Getoor, 2003 75.1%
§ ¢.¢&:..‘ .ﬁg 'o'"’::.?.a g. X .,s‘e;g . oo 8% Planetoid (Yang et al., 2016) 75.7%
oo 2o '403.‘,\.‘:3 2 ’3’.’9 MY :3%"‘*"% Chebyshev (Defferrard et al., 2016) 81.2%
oot SHas ¢ 5’5‘53‘?"’“"»«&@ P AN ¢ ® %sn. GCN (Kipf & Welling, 2017) 81.5%
& o TG L0 B eage™d ” & Do onfe'eee
)7 Bt o) o gt A EEEYTT GAT 83.3%
e’ re0esc, § u’". 0,828 ° o _aipees R sage NI 0 00, .
.3@@,*:?-.«... ; ’.’. .:‘ S0 o e geton's Ve @ o' @, improvement w.r.t GCN 1.8%
..' D). .‘ % ‘.‘ ﬁ;'.g @ ’.")\ e ‘(,q
e s ° Vieg 0 S99 < <) A Gged ©® ; - H
9':.:*: . WrWSe * & 3@55; el 3% S Attention mechanism can be used with many

pe 4 [J
———f AL
5 %?l"'o'.",o.':; oa f:%“ C.'c‘." @% ? ;i: ..g'a‘. e
PRI L R WP et
A e, e °
oe 8% &

: Cora Citation Net

In many cases, attention leads to performance

gains

= t-SNE plot of GAT-based node embeddings:

* Node color: 7 publication classes

o e ot B :’é&,mé.#".’,%&;?gw different graph neural network models

= Edge thickness: Normalized attention coefficients between
nodes i and j, across eight attention heads, Zk(a{‘j + a}‘;)

16

Design Space of Graph Neural Networks

Layer in Practice

= |n practice, these classic GNN A suggested GNN Layer
layers are a great starting point _ Lmtar
= We can often get better —Y
performance by considering a 3
general GNN |ayer design Transformation - Droi)out
= Concretely, we can include Rkl
modern deep learning modules _ [Attention
that proved to be useful in many Aggret,aﬁon
domains v

Layer in Practice

Many modern deep learning modules can be incorporated into a GNN layer

= Batch Normalization:
= Stabilize neural network training

= Dropout:
“ Prevent overfitting
= Attention/Gating:
= Control the importance of a message

= More:
= Any other useful deep learning modules

18

A suggested GNN Layer

Transformation -

4

Linear

v

BatchNorm

v

Dropout

v

Activation

v

Attention

2

Aggregation

v

Dropout: A Simple Way to Prevent Neural Networks from Overfitting

out

Goal: Regularize a neural net to prevent overfitting.
Idea:

* During training: with some probability p, randomly set
neurons to zero (turn off)

* During testing: Use all the neurons for computation

Dropout

19 Removed neurons

out for GNNs

In GNN, Dropout is applied to the linear ®

layer in the message function | (2) Aggregation

i : TR ~lym
= A simple message function with linear > | (1) Message

. D) _ ywRrl-1)
layer: m ' =w"h,
ww
Dropout
h{~V m®

Visualization of a linear layer
20

ssive Power for Shallow GNNS

How to make a shallow GNN more expressive?

Solution: Add layers that do not pass messages

“ A GNN does not necessarily only contain GNN layers

= E.g., we can add MLP layers (applied to each node) before and after GNN layers,
as pre-process layers and post-process layers

R — \

MLP Layer

Pre-

2

process |

MLP Layer

layers

MLP Layer

Post-

¥

process |

MLP Layer

layers

e

Pre-processing layers: Important when encoding
node features is necessary.
E.g., when nodes represent images/text

Post-processing layers: Important when reasoning /
transformation over node embeddings are needed

E.g., graph classification, knowledge graphs

In practice, adding these layers works great!

Deep Residual Learning for Image Recognition

n GNN Layer Connectivity

What if my problem still requires many GNN layers?
Lesson: Add skip connections in GNNs

“ QObservation from over-smoothing: Node embeddings in
earlier GNN layers can sometimes better differentiate nodes

= Solution: We can increase the impact of earlier layers on the
final node embeddings, by adding shortcuts in GNN

R 5 Duplicate

e into two

layers | ~ branches

;'.'.'_'.'.'.'.'.'.'.'.'.'. '.'.'.'.'.'.'.'.'.'.'.E'.'.'.'_'.'.'.'.'.'.'.'.'.'.'.'.'.'.'.'.'.; X 3 Idea Of sklp connections:
| weight layer Before adding shortcuts:

| Sk : relu

cometion T x F(x)

' g e identity ~ After adding shortcuts:
E.':.'.'.':.'.'.—.'.'." '..'.'.'.':.':.':E.'::.'::.'.'::.'::.':.':.'::.' ‘F(X) —|— X F(X) + X

MLP Layer Post-

el Sum two
process

Veit et al. Residual Networks Behave Like Ensembles of Relatively Shallow Networks, ArXiv 2016

Connections

= Why do skip connections work?

* Intuition: Skip connections create a mixture of models

= N skip connections = 2N possible paths
= Each path could have up to N modules

* We automatically get a mixture All the possible paths:
of shallow GNNs and deep GNNs 2%2%2=2°=8

Path 2: skip this module

Building block

Skip
connection

‘;fl ' ‘fg ' "

Residual

module

Path 1: include this module
(a) Conventional 3-block residual network (b) Unraveled view of (a)

with Skip Connections

= A standard GCN layer

v

- hY = (

ZueN (v) W(l)

= A GCN layer with skip connection

This is our F(x)

h{—v
IN(v)])

= hl(,l) =0(

24

(1-1)
1) hy (1-1)
ZuEN(v) W() IN(v)| + hv
F(x) + X

weight layer

relu
A 4

weight layer

MLP Layer

v

MLP Layer

MLP Layer

v

MLP Layer

b ¢
identity

Pre-
process
layers

Skip

Post-
process

Representation learning on graphs with jumping knowledge networks

r Skip Connections

Input: h,(,o)
v
GNN Layer
Other options: Directly Lo
[v v
skip to the last layer I
= The final layer directly h®
aggregates from the all the GNN'Layer
node embeddings in the hg)g:
previous Iayers Layer aggregation
Concat/Pooling/LSTM
Output: hgf tnal)

gmentation (Optional)

26

Augment Graphs

Problems in training a GNN
* Features:
" The input graph lacks features

= Graph structure:

= The graph is too sparse = inefficient message passing
= The graph is too dense > message passing is too costly

= The graph is too large = cannot fit the computational graph into a GPU

Augmentation Approaches

= Graph Feature augmentation

= The input graph lacks features = feature augmentation

= Graph Structure augmentation

= The graph is too sparse = Add virtual nodes / edges

* The graph is too dense = Sample neighbors when doing message passing

* The graph is too large = Sample subgraphs to compute embeddings

res Augmentation on Graphs

When might we need feature augmentation?
(1) Input graph does not have node features

" This is common when we only have the adj. matrix
Standard approaches:
a) Assign constant values to nodes

29

res Augmentation on Graphs

When might we need feature augmentation?
(1) Input graph does not have node features
= This is common when we only have the adj. matrix
Standard approaches:
b) Assign unique IDs to nodes

= These IDs are converted into one-hot vectors

2
One-hot vector for node with ID=5

1 3 ID

)
: [0,0,0,0,1,0]
: .

J
1
INPUT GRAPH 30 TOta| number Of IDS = 6 U‘

5

res Augmentation on Graphs

Constant node feature

1 1
1 1

PPPPPPPPPP

One-hot node feature
2

1 3

4 6
5

Expressive power

Medium. All the nodes are
identical, but GNN can still learn
from the graph structure

High. Each node has a unique ID,
so node-specific information can
be stored

Inductive learning
(Generalize to
unseen nodes)

High. Simple to generalize to new
nodes: we assign constant
feature to them, then apply our
GNN

Low. Cannot generalize to new
nodes: new nodes introduce new
IDs, GNN doesn’t know how to
embed unseen IDs

Computational
cost

Low. Only 1 dimensional feature

High. O (|V|) dimensional feature,
cannot apply to large graphs

Use cases

Any graph, inductive settings
(generalize to new nodes)

Small graph, transductive
settings (no new nodes)

31

Identity-aware Graph Neural Networks

res Augmentation on Graphs

When might we need feature augmentation?

(2) Certain structures are hard to learn by GNN
Example: Cycle count feature:

= Can GNN learn the length of a cycle that v resides in?
= Unfortunately, no

v1 resides in a cycle with length 3 v1 resides in a cycle with length 4

4

res Augmentation on Graphs

V1 cannot differentiate which graph it resides in

= Because all the nodes in the graph have degree of 2
= The computational graphs will be the same binary tree

V) resides in a cycle v, resides in a cycle : _
with length 3 with length 4 The computational
: graphs for node v4
v

are always the same

v resides in a cycle with infinite length
() () M\
@,) &) U O

res Augmentation on Graphs

When might we need feature augmentation?
(2) Certain structures are hard to learn by GNN

Solution: We can use cycle count as augmented node features

We start Augmented node feature for v1 Augmented node feature for v1
from cycle
with Iet\gtho [O’ 0’ 0’ 1’ 0' 0] [ol ol OI 0, 1) 0]

t t

v1 resides in a cycle with length 3 v1 resides in a cycle with length 4

4

res Augmentation on Graphs

When might we need feature augmentation?

(2) Certain structures are hard to learn by GNN
Other commonly used augmented features:

* Node degree
* Clustering coefficient
= Centrality

35

irtual Nodes/ Edges

Motivation: Augment sparse graphs
(1) Add virtual edges

= Common approach: Connect 2-hop neighbors via
virtual edges

* Intuition: Instead of using adj. matrix A for GNN
computation, use A + A° Authors Papers
= Use cases: Bipartite graphs

= Author-to-papers (they authored)

= 2-hop virtual edges make an author-author
collaboration graph

36

The virtual node

L) l .
$ o o
) . o
J ” o
& o= s
D e o
o° 0 g
D . .
: I
.

irtual Nodes/Edges

= Motivation: Augment sparse graphs
= (2) Add virtual nodes

* The virtual node will connect to all the nodes in the graph
= Suppose in a sparse graph, two nodes have shortest path distance of 10

= After adding the virtual node, all the nodes will have a distance of two
* Node A - Virtual node — Node B

" Benefits: Greatly improves message passing in sparse graphs

