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Data Structure & Algorithms
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Case studies on Community Detection:
Connected Component, K-Core, K-Truss, Clique, …
Clustering/partition algorithms, …

Step 1:
 Formulate   

problem

Step 2:
Design 

Algorithm

It is hard in many applications.
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Learning-based Algorithms
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§ It is hard to define a good community.

§ It is not hard to judge a community.

Step 1:
Decide 

parameters

Step 2:
Define loss 

function

Step 3: 
Training 

Efficiency VS Effectiveness
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Application
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https://www.datacamp.com/tutorial/comprehensive-introduction-graph-neural-networks-gnns-tutorial



UNSW COMP9312_23T2

Application
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Node classification: Predict a property of a node
Example: Categorize online users / items

Link prediction: recommendation
Example: Knowledge graph completion

Graph classification: Categorize different graphs
Example: Molecule property prediction

Clustering: Detect if nodes form a community
Example: Social circle detection

Other tasks:
Graph generation: Drug discovery
Graph evolution: Physical simulation
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Application: Molecule Generation
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Use case 1: Generate novel molecules 
with high drug likeness

Use case 2: Optimize existing molecules to 
have desirable properties
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Application: Drug Discovery
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Antibiotics are small molecular graphs
§ Nodes: Atoms
§ Edges: Chemical bonds

Konaklieva, Monika I. "Molecular targets of β-lactam-based antimicrobials: 
beyond the usual suspects." Antibiotics 3.2 (2014): 128-142.
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Application: Drug Side Effects
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Many patients take multiple drugs to treat complex or co-existing diseases:
¡ 46% of people ages 70-79 take more than 5 drugs
¡ Many patients take more than 20 drugs to treat heart disease,

depression, insomnia, etc.

Task: Given a pair of drugs predict adverse side effects

30%
prob.

65%
prob.
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Application: Google Map
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Predict via Graph Neural Networks

Image credit: DeepMind
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ML/DL on traditional data
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Modern deep learning toolbox is designed 
for simple sequences & grids

Text/Speech/Audio

Images
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Challenges
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Graphs are complex
§ Arbitrary size and complex topological structure (i.e., no spatial locality like

grids)
§ No fixed node ordering or reference point
§ Often dynamic and have multimodal features

Graph Image

Text
VS
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Graph Neural Networks
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Raw Data Graph Structured 
Features

Learning 
Algorithm Prediction

Adjacency Matrix? Adjacency List? CSR?

Machine learning needs features!
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How to get features
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Raw Data Graph Structured 
Features

Learning 
Algorithm Prediction

Adjacency Matrix? Adjacency List? CSR?

Machine learning needs features!

1. Feature Engineering
 Covered in this topic

2. Graph Representation Learning
 Optional topic of node embedding
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Different types of graph features
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§ Node Level

§ Edge Level

§ Graph Level
n node features

m edge features

1 graph feature
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Traditional ML on Graphs
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Good features effectively represent the graph structure and achieve good performance.

1. Design features for nodes/edges/graphs.

2. Get features additional features from training data.

3. Use features to train parameters.

Testing: predict using the feature of query node/link/graph
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Node-Level Features
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Goal: 
Characterize the structure and position of a node in the network:

A typical application: node classification
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Adjacency Matrix?
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Not working for big graphs!
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Adjacency List?
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v1 4 5
v2 4
v3 4 5
v4 1 2 3 5
v5 1 3 4

1

4

2

3

5

Feature dimension need to be consistent
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Adjacency List?
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v1 4 5 0 0
v2 4 0 0 0
v3 4 5 0 0
v4 1 2 3 5
v5 1 3 4 0

1

4

2

3

5

Feature dimension need to be consistent

How about this?
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Node-Level Features: Overview
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§ Node degree

§ Clustering coefficient

§ Graphlets

§ Node centrality

§ …
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Node Degree
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Degree of a node: the number of neighbors.
Treat all neighbors equally.

1

1

3

1

4
2

3

1
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Node Centrality: Clustering Coefficient
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Measures how connected 𝑣 ′𝑠 neighboring nodes are:

Can be also understand as #triangles/#possible triangles

v
v

𝑒𝑣	=	1 𝑒𝑣	=	0.5 𝑒𝑣	=	0

v

Ego-network:

the induced subgraph 

of the node and all its 

neighbors
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Computing Clustering Coefficient

24

Can you design an algorithm to compute the clustering 
coefficient of all nodes in a graph with n nodes and m edges?
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Node Features: Graphlets
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Observation: Clustering coefficient counts the #(triangles) in the
ego-network.

v

𝑒𝑣	=	0.5
Three triangles in 6 possible triplets

We can generalize the above by counting #(pre-specified subgraphs, i.e., graphlets).
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Node Features: Graphlets
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Graphlets are small subgraphs.
We aim to describe network structure around the node based on graphlets.

Analogy: Degree 
counts #(edges) that a node touches.

Clustering coefficient 
counts #(triangles) that a node is involved.

Graphlet Degree Vector (GDV): 
Graphlet-base features for nodes

GDV counts #(graphlets) that a node is involved.
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Node Features: Graphlets
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How to represent a node by graphlets?
Let’s start by considering (connected) graphlets with three nodes:

Choose a specific pattern (wedge)

How many subgraphs containing u that are isomorphic to the pattern?

u
a

b

cd

e
f

g
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Node Features: Graphlets
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How many subgraphs containing u that are isomorphic to the pattern?

Choose a specific pattern (wedge)

u
a

b

cd

e
f

g

We use 11 as the feature of u

11 after removing symmetric cases
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Node Features: Graphlets
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Move forward by utilizing different types:

Choose a specific pattern (wedge)

u
a

b

cd

e
f

g

We use [6,5] as the feature of u

6 for type 0
5 for type 1

0
1
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Node Features: Graphlets
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Move forward by only considering induced matching instances:

a

c e
d

b

c
d

b

c
d

b

A graph A non-induced subgraph An induced subgraph
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Node Features: Graphlets
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Move forward by only considering induced matching instances:

A

B C

D

4

3 6

5

2

1

Pattern !

Data Graph "

A

B C

D

4

3 6

5

2

1

Pattern !

Data Graph "

non-induced matching induced matching
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Node Features: Graphlets
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Move forward by only considering induced matching instances:

Choose a specific pattern (wedge)

u
a

b

cd

e
f

g

We use [5,3] as the feature of u

0
1
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Node Features: Graphlets
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Move forward by utilizing all 3-graphlets:

0
1 2

There are three types in all 3-graphlets.

Type 0: u
a

b

cd

e
f

g

6 for type 0
5 for type 1
1 for type 2

We use [5,3,1] as the feature of u
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Node Features: Graphlets
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Consider all graphlets with <= 5 nodes
How many node roles in all connected non-isomorphic subgraphs?

There are 73 different graphlets of 
up to 5 nodes.

To get the node feature, compute 
the number of induced matching 
instances for each role id.
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Node Features: Graphlets
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Graphlet Degree Vector (GDV): A count vector of graphlets rooted at a given node.

Considering graphlets of size 2-5 nodes we get:
§ Vector of 73 coordinates is a signature of a node that describes the topology of node's 

neighborhood

Graphlet degree vector provides a measure of a node’s local network topology:
§ Comparing vectors of two nodes provides a more detailed measure of local topological 

similarity than node degrees or clustering coefficient.

Usually, we only compute up to 4 or 5 nodes . . .
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Node Features: Graphlets
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More examples:
GFV(u) = [2,0,2,1]

1
2 30u
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Node Centrality
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Node degree counts neighbors without capturing their importance.
Node centrality takes the node importance in a graph into account
Different ways to model importance:
§ PageRank
§ Eigenvector centrality
§ Betweenness centrality
§ Closeness centrality
§ many others…

degree: 2
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𝜆	 is normalization constant 
(it will turn out to be the largest 
eigenvalue of A)

Node Centrality: Eigenvector

38

Motivation
A node is important if surrounded by important neighbors.

We model the centrality of node 𝑣 as the sum of the centrality of
neighbors:

The above equation models centrality in a recursive manner. 
How do we solve it?

38



Optional
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Node Centrality: Eigenvector
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§ We see that centrality 𝑐	is the eigenvector of 𝑨!
§ The largest eigenvalue 𝜆𝑚𝑎𝑥	 is always positive and unique (by Perron-

Frobenius Theorem).
§ The eigenvector 𝒄𝑚𝑎𝑥	 corresponding to 𝜆𝑚𝑎𝑥	 is used for centrality.

Rewrite the recursive equation in the matrixB form.

𝜆𝒄	=	𝑨𝒄
• 𝑨: Adjacency matrix

𝑨𝑢𝑣=	1	if 𝑢	∈	𝑁(𝑣)
• 𝒄: Centrality vector
• 𝜆: Eigenvalue

𝜆	is normalization const 
(largest eigenvalue of A)

Math W
arning!
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Node Centrality: Betweenness
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Betweenness centrality:
A node is important if it lies on many shortest paths between other nodes.

degree: 2

How to identity the bridge node
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Node Centrality: Betweenness (cont)
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Example:

a

c e
d

b

ca = cb = ce = 0

cc  = 3
(a-c-b, a-c-d, a-c-d-e)

cd = 3
(a-c-d-e, b-d-e, c-d-e)
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Computing Betweenness Centrality
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Exact solution:
O(nm) for unweighted graphs
O(nm+n2logn) for weighted graphs
https://kops.uni-konstanz.de/server/api/core/bitstreams/420590d1-3010-4eab-a585-6fa3eff46f9e/content

Approximate solution:
Sampling a set of shortest paths…

https://kops.uni-konstanz.de/server/api/core/bitstreams/420590d1-3010-4eab-a585-6fa3eff46f9e/content
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Node Centrality: Closeness
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Closeness centrality:
A node is important if it closes to all other nodes.

a

c e
d

b ca = 1/(2 + 1 + 2 + 3) = 1/8
(a-c-b, a-c, a-c-d, a-c-d-e)

cd = 1/(2 + 1 + 1 + 1) = 1/5
(d-c-a, d-b, d-c, d-e)
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Computing Closeness Centrality
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Can you design an algorithm to compute the closeness centrality 
of all nodes in a graph with n nodes and m edges?
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Node-Level Feature: Summary
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§ Importance-based features:
§ Node degree
§ Different node centrality measures

§ Structure-based features:
§ Node degree
§ Clustering coefficient
§ Graphlet count vector
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Node-level Feature: Summary
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Importance-based features: capture the importance of a 
node in a graph
§ Node degree:

§ Simply counts the number of neighboring nodes

§ Node centrality:
§ Model importance of neighbors in a graph

§ Different modeling choices: eigenvector centrality, betweenness centrality,
closeness centrality

Useful for predicting influential nodes in a graph

§ Example: predicting celebrity users in a social network
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Node-level Feature: Summary
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Structure-based features: Capture topological properties of
local neighborhood around a node.
§ Node degree:

§ Counts the number of neighboring nodes
§ Clustering coefficient:

§ Measures how connected neighboring nodes are
§ Graphlet degree vector:

§ Counts the occurrences of different graphlets

Useful for predicting a particular role a node plays in a graph:
§ Example: Predicting protein functionality in a protein-protein 

interaction network.
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Learning Outcome
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¡ Traditional ML Pipeline
§ Hand-crafted feature + ML model

¡ Hand-crafted node features for graph data
§ Node degree, centrality, clustering coefficient, graphlets


