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Clutline

= Machine Learning on Graphs

= Node Feature Engineering




Structure & Algorithms

Case studies on Community Detection:

Connected Component, K-Core, K-Truss, Clique, ...

Clustering/partition algorithmes, ... E ; §§ ;

It is hard in many applications.




ing-based Algorithms

= |tis hard to define a good community.

= |tis not hard to judge a community.

Efficiency VS Effectiveness




cation

https://www.datacamp.com/tutorial/comprehensive-introduction-graph-neural-networks-gnns-tutorial



cation

Node classification: Predict a property of a node
Example: Categorize online users / items
Link prediction: recommendation
Example: Knowledge graph completion
Graph classification: Categorize different graphs
Example: Molecule property prediction
Clustering: Detect if nodes form a community
Example: Social circle detection
Other tasks:
Graph generation: Drug discovery
Graph evolution: Physical simulation

Node level

Graph-level D Community

rediction,
graph (subgraph)
generation level




cation: Molecule Generation
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cation: Drug Discovery

Antibiotics are small molecular graphs
- Nodes: Atoms
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Konaklieva, Monika I. "Molecular targets of B-lactam-based antimicrobials:
beyond the usual suspects." Antibiotics 3.2 (2014): 128-142.




cation: Drug Side Effects

Many patients take multiple drugs to treat complex or co-existing diseases:
46% of people ages 70-79 take more than 5 drugs
Many patients take more than 20 drugs to treat heart disease,
depression, insomnia, etc.

Task: Given a pair of drugs predict adverse side effects
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cation: Google Map

Predict via Graph Neural Networks
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THE MODEL ARCHITECTURE FOR DETERMINING OPTIMAL ROUTES AND THEIR TRAVEL TIME. Image credit: DeepMind
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enges

Graphs are complex

= Arbitrary size and complex topological structure (i.e., no spatial locality like
grids)

= No fixed node ordering or reference point

=  Often dynamic and have multimodal features
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Neural Networks
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Adjacency Matrix? Adjacency List? CSR?

Machine learning needs features!



to get features

1. Feature Engineering
Covered in this topic

2. Graph Representation Learning
Optional topic of node embedding
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Adjacency Matrix? Adjacency List? CSR?

Machine learning needs features!



rent types of graph features

m edge features
\

= Node Level

= Edge Level

‘1§ raph feature
= Graph Level graph ¥




tional ML on Graphs

Good features effectively represent the graph structure and achieve good performance.

1. Design features for nodes/edges/graphs.
2. Get features additional features from training data.

3. Use features to train parameters.

Testing: predict using the feature of query node/link/graph



-Level Features

Goal:
Characterize the structure and position of a node in the network:

A typical application: node classification



ency Matrix?
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Not working for big graphs!
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ency List?
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Feature dimension need to be consistent



ency List?

How about this?
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v2
v3
vi
vd

Feature dimension need to be consistent
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-Level Features: Overview

= Node degree
" (Clustering coefficient
" Graphlets

= Node centrality

21




Degree

Degree of a hode: the number of neighbors.
Treat all neighbors equally.

22




Centrality: Clustering Coefficient

Measures how connected v s neighboring nodes are:

_ #(edges among neighboring nodes)
€y = (kv) €[0,1] Ego-network:
2

the induced subgraph

Can be also understand as #triangles/#possible triangles
of the node and all its

neighbors
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uting Clustering Coefficient

Can you design an algorithm to compute the clustering
coefficient of all nodes in a graph with n nodes and m edges?
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Features: Graphlets

Observation: Clustering coefficient counts the #(triangles) in the
ego-network.

e, = 0.5
Three triangles in 6 possible triplets

We can generalize the above by counting #(pre-specified subgraphs,i.e., graphlets).



Features: Graphlets

Graphlets are small subgraphs.
We aim to describe network structure around the node based on graphlets.

Analogy: Degree
counts #(edges) that a node touches.
Clustering coefficient
counts #(triangles) that a node is involved.
Graphlet Degree Vector (GDV):

Graphlet-base features for nodes
GDV counts #(graphlets) that a node is involved.



Features: Graphlets

How to represent a node by graphlets?
Let’s start by considering (connected) graphlets with three nodes:

Choose a specific pattern (wedge)

How many subgraphs containing u that are isomorphic to the pattern?



Features: Graphlets

How many subgraphs containing u that are isomorphic to the pattern?

Choose a specific pattern (wedge)

We use 11 as the feature of u



Features: Graphlets

Move forward by utilizing different types: -

Choose a specific pattern (wedge)

We use [6, 5] as the feature of u



Features: Graphlets

Move forward by only considering induced matching instances:

2,

A graph A non-induced subgraph  An induced subgraph




Features: Graphlets

Move forward by only considering induced matching instances:

Data Graph G Data Graph G

non-induced matching induced matching



Features: Graphlets

Move forward by only considering induced matching instances:

Choose a specific pattern (wedge)

We use [ 5, 3] as the feature of u



Features: Graphlets

Move forward by utilizing all 3-graphlets:

Type O:

There are three types in all 3-graphlets.

Weuse [5, 3, 1] as the feature of u



Features: Graphlets

Consider all graphlets with <= 5 nodes
How many node roles in all connected non-isomorphic subgraphs?

2-node 3-node graphlets 4-node graphlets
graphlet
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Features: Graphlets

Graphlet Degree Vector (GDV): A count vector of graphlets rooted at a given node.
Considering graphlets of size 2-5 nodes we get:

= Vector of 73 coordinates is a signature of a node that describes the topology of node's
neighborhood

Graphlet degree vector provides a measure of a node’s local network topology:

= Comparing vectors of two nodes provides a more detailed measure of local topological
similarity than node degrees or clustering coefficient.

Usually, we only compute up to 4 or 5 nodes . . .



Features: Graphlets

More examples:
GFV(u) = [2,0,2,1]




Centrality

Node degree counts neighbors without capturing their importance.
Node centrality takes the node importance in a graph into account

Different ways to model importance:
= PageRank

= Eigenvector centrality

= Betweenness centrality

» Closeness centrality

= many others... .
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Centrality: Eigenvector

Motivation
A node is important if surrounded by important neighbors.

We model the centrality of node v as the sum of the centrality of
neighbors:

C.. = 1 c A is normalization constant
v 2 U (it will turn out to be the largest
UEN (V) eigenvalue of A)

The above equation models centrality in a recursive manner.

How do we solve it?
28



Node Centrality: Eigenvector Optional

Rewrite the recursive equation in the matrix form.

1
Cy =~ 2 c, émmml) )c = Ac

U€EN (v) * A:Adjacency matrix
A is normalization const Ay=11Tu€N()
(largest eigenvalue of A) * c: Centrality vector

A: Eigenvalue

" We see that centrality c is the eigenvector of A!

" The largest eigenvalue A,,, is always positive and unique (by Perron-
Frobenius Theorem).

" The eigenvector €45 corresponding to A4 is used for centrality.

39 UNSW COMP9312_23T2



Centrality: Betweenness

Betweenness centrality:
A node is important if it lies on many shortest paths between other nodes.

B #(shortest paths betwen s and ¢ that contain v)
v = Z #(shortest paths between s and t)

SFUVFL

A

degree: 2
How to identity the bridge node



Centrality: Betweenness (cont)

B #(shortest paths betwen s and t that contain v)
v = Z #(shortest paths between s and t)

SFUV+L




uting Betweenness Centrality

Exact solution:
O0(Cnm) for unweighted graphs
O(nm+n?logn) for weighted graphs

https.//kops.uni-konstanz.de/server/api/core/bitstreams/420590d1-3010-4eab-a585-6fa3eff46f9e/content

Approximate solution:
Sampling a set of shortest paths...

42


https://kops.uni-konstanz.de/server/api/core/bitstreams/420590d1-3010-4eab-a585-6fa3eff46f9e/content

Centrality: Closeness

Closeness centrality:
A node is important if it closes to all other nodes.

1
Y. Shortest path length between u and v

Cy =

c,=1/(2+1 +2+ 3) =1/8
(a-c-b, a-c, a-c-d, a-c-d-e)

1+1+1)=1/5

c,= 1/(C2 + 1 +
d-c, d-e)

+
(d-c-a, a-b,

® ‘!’Illlllii.



uting Closeness Centrality

Can you design an algorithm to compute the closeness centrality
of all nodes in a graph with n nodes and m edges?
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-Level Feature: Summary

= |mportance-based features:
= Node degree
= Different node centrality measures

= Structure-based features:
= Node degree
= Clustering coefficient
= Graphlet count vector
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-level Feature: Summary

Importance—based features: capture the importance of a
node in a graph
=_Node degree:
= Simply counts the number of neighboring nodes
= Node centrality:

= Model importance of neighbors in a graph

= Different modeling choices: eigenvector centrality, betweenness centrality,
closeness centrality

Useful for predicting influential nodes in a graph

= Example: predicting celebrity users in a social network



-level Feature: Summary

Structure-based features: Capture topological properties of
local neighborhood around a node.
= Node degree:
= Counts the number of neighboring nodes
= Clustering coefficient:
= Measures how connected neighboring nodes are
= Graphlet degree vector:

= Counts the occurrences of different graphlets
Useful for predicting a particular role a node plays in a graph:
= Example: Predicting protein functionality in a protein-protein

interaction network.



ing Outcome

= Traditional ML Pipeline
* Hand-crafted feature + ML model

= Hand-crafted node features for graph data

* Node degree, centrality, clustering coefficient, graphlets



