Machine Learning on Graphs

COMP9312_23T2

Outline

- **EXEDENT Machine Learning on Graphs**
- **Node Feature Engineering**

Data Structure & Algorithms

Case studies on Community Detection:

Connected Component, K-Core, K-Truss, Clique, … Clustering/partition algorithms, …

Learning-based Algorithms

- It is hard to define a good community.
- It is not hard to judge a community.

Efficiency VS Effectiveness

Application

https://www.datacamp.com/tutorial/comprehensive-introduction-graph-neural-networks-gnns-tutorial

Application

Node classification: Predict a property of a node **Example:** Categorize online users / items **Link prediction**: recommendation **Example:** Knowledge graph completion **Graph classification**: Categorize different graphs **Example:** Molecule property prediction **Clustering**: Detect if nodes form a community **Example:** Social circle detection **Other tasks**:

Graph generation: Drug discovery **Graph evolution**: Physical simulation

Application: Molecule Generation

Use case 1: Generate novel molecules with high drug likeness

Use case 2: Optimize existing molecules to have desirable properties

Application: Drug Discovery

Antibiotics are small molecular graphs

- § Nodes: Atoms
- Edges: Chemical bonds

Konaklieva, Monika I. "Molecular targets of β-lactam-based antimicrobials: beyond the usual suspects." Antibiotics 3.2 (2014): 128-142.

8

Application: Drug Side Effects

Many patients take multiple drugs to treat complex or co-existing diseases:

- 46% of people ages 70-79 take more than 5 drugs
- Many patients take more than 20 drugs to treat heart disease, depression, insomnia, etc.

Task: Given a pair of drugs predict adverse side effects

Application: Google Map

Predict via Graph Neural Networks

ML/DL on traditional data

Challenges

Graphs are complex

- § Arbitrary size and complex topological structure (*i.e.*, no spatial locality like grids)
- No fixed node ordering or reference point
- Often dynamic and have multimodal features

Graph Neural Networks

How to get features

1. Feature Engineering Covered in this topic

2. Graph Representation Learning Optional topic of node embedding

Different types of graph features

Traditional ML on Graphs

Good features effectively represent the graph structure and achieve good performance.

- 1. Design features for **nodes**/edges/graphs.
- 2. Get features additional features from training data.
- 3. Use features to train parameters.

Testing: predict using the feature of query node/link/graph

Node-Level Features

Goal:

Characterize the structure and position of a node in the network:

A typical application: node classification

Adjacency Matrix?

Not working for big graphs!

Adjacency List?

Feature dimension need to be consistent

Adjacency List?

How about this?

Feature dimension need to be consistent

Node-Level Features: Overview

- Node degree
- Clustering coefficient
- § Graphlets
- Node centrality
- § …

Node Degree

Degree of a node: the number of neighbors. Treat all neighbors equally.

Node Centrality: Clustering Coefficient

Measures how connected $v's$ neighboring nodes are:

 $e_v = \frac{\#(\text{edges among neighboring nodes})}{\binom{k_v}{2}} \in [0,1]$

Can be also understand as #triangles/#possible triangles

Ego-network: the induced subgraph of the node and all its neighbors

v v $e_v = 1$ $e_v = 0.5$ $e_v = 0$ *v*

Computing Clustering Coefficient

Can you design an algorithm to compute the clustering coefficient of all nodes in a graph with *n* nodes and *m* edges?

Observation: Clustering coefficient counts the #(triangles) in the ego-network.

Three triangles in 6 possible triplets

We can generalize the above by counting #(pre-specified subgraphs, i.e., **graphlets**).

Graphlets are small subgraphs.

We aim to describe network structure around the node based on graphlets.

Analogy: Degree

counts **#(edges)** that a node touches.

Clustering coefficient

counts **#(triangles)** that a node is involved.

Graphlet Degree Vector(GDV):

Graphlet-base features for nodes

GDV counts **#(graphlets)** that a node is involved.

How to represent a node by graphlets?

Let's start by considering (connected) graphlets with three nodes:

Choose a specific pattern (wedge)

How many subgraphs containing u that are isomorphic to the pattern?

How many subgraphs containing *u* that are isomorphic to the pattern?

11 after removing symmetric cases

We use *11* as the feature of *u*

Move forward by utilizing different types:

Choose a specific pattern (wedge)

We use *[6,5]* as the feature of *u*

Move forward by only considering induced matching instances:

Move forward by only considering induced matching instances:

Move forward by only considering **induced** matching instances:

Choose a specific pattern (wedge)

We use *[5,3]* as the feature of *u*

Move forward by utilizing all 3-graphlets:

6 for type 0 5 for type 1 1 for type 2

There are three types in all 3-graphlets.

We use *[5,3,1]* as the feature of *u*

Consider all graphlets with <= 5 nodes

How many node roles in all connected non-isomorphic subgraphs?

There are **73** different graphlets of up to 5 nodes.

To get the node feature, compute the number of induced matching instances for each role id.

Graphlet Degree Vector (GDV): A count vector of graphlets rooted at a given node.

Considering graphlets of size 2-5 nodes we get:

§ Vector of 73 coordinates is a signature of a node that describes the topology of node's neighborhood

Graphlet degree vector provides a measure of a node's local network topology:

§ Comparing vectors of two nodes provides a more detailed measure of local topological similarity than node degrees or clustering coefficient.

Usually, we only compute up to 4 or 5 nodes . . .

More examples: *GFV(u) = [2,0,2,1]*

Node Centrality

Node degree counts neighbors without capturing their importance. Node **centrality** takes the node importance in a graph into account

Differentwaysto model importance:

- § PageRank
- Eigenvector centrality
- § Betweenness centrality
- § Closeness centrality
- many others...

Node Centrality: Eigenvector

Motivation

A node is important if surrounded by important neighbors.

We model the centrality of node ν as the sum of the centrality of neighbors:

$$
c_{\nu} = \frac{1}{\lambda} \sum_{u \in N(\nu)} c_u
$$
 λ is normalization constant
 (it will turn out to be the largest eigenvalue of A)

The above equation models centrality in a recursive manner. How do we solve it?

Node Centrality: Eigenvector

Rewrite the recursive equation in the matrix form.

$$
c_v = \frac{1}{\lambda} \sum_{u \in N(v)} c_u \iff \lambda
$$

 λ is normalization const (largest eigenvalue ofA) $c = Ac$

- A: Adjacency matrix $A_{uv} = 1$ if $u \in N(v)$
- \cdot \cdot \cdot Centrality vector
- λ : Eigenvalue
- We see that centrality *c* is the **eigenvector of A!**
- **The largest eigenvalue** λ_{max} **is always positive and unique (by Perron-**Frobenius Theorem).
- **The eigenvector** c_{max} **corresponding to** λ_{max} **is used for centrality.**

Optional

Math Warning?

Node Centrality: Betweenness

Betweenness centrality:

A node is important if it lies on many shortest paths between other nodes.

 $c_v = \sum \frac{\#(\text{shortest paths between } s \text{ and } t \text{ that contain } v)}{\#(\text{shortest paths between } s \text{ and } t)}$ *degree: 2*

How to identity the bridge node

Node Centrality: Betweenness (cont)

Example:

$$
= \sum_{s\neq v\neq t} \frac{\#(\text{shortest paths between } s \text{ and } t \text{ that contain } v)}{\#(\text{shortest paths between } s \text{ and } t)}
$$

 $c_a = c_b = c_e = 0$

 c_v

$$
c_c = 3
$$

\n $(a-c-b, a-c-d, a-c-d-e)$
\n $c_a = 3$
\n $(a-c-d-e, b-d-e, c-d-e)$

UNSW COMP9312_23T2

Computing Betweenness (

Exact solution: *O(nm)* for unweighted graphs *O(nm+n²logn)* for weighted graphs

https://kops.uni-konstanz.de/server/api/core/bitstreams/420590d1-3010-4eab-a585-6fa3eff46f9e/content

Approximate solution: Sampling a set of shortest paths…

Node Centrality: Closeness

Closeness centrality:

A node is important if it closes to all other nodes.

 $c_v = \frac{c_v}{\sum_{u \neq v}$ shortest path length between u and v

b ca = 1/(2 + 1 + 2 + 3) = 1/8 (a-c-b, a-c, a-c-d, a-c-d-e)

$$
c_a = 1/(2 + 1 + 1 + 1) = 1/5
$$

(d-c-a, d-b, d-c, d-e)

Computing Closeness Centrality

Can you design an algorithm to compute the closeness centrality of all nodes in a graph with *n* nodes and *m* edges?

Node-Level Feature: Summary

- **•** Importance-based features:
	- Node degree
	- § Different node centrality measures
- Structure-based features:
	- § Node degree
	- Clustering coefficient
	- Graphlet count vector

Node-level Feature: Summary

Importance-based features: capture the importance of a node in a graph

§ Node degree:

- Simply counts the number of neighboring nodes
- § Node centrality:
	- Model importance of neighbors in a graph
	- Different modeling choices: eigenvector centrality, betweenness centrality, closeness centrality

Useful for predicting influential nodes in a graph

Example: predicting celebrity users in a social network

Node-level Feature: Summary

Structure-based features:Capture topological properties of local neighborhood around a node.

- § **Node degree:**
	- Counts the number of neighboring nodes
- § **Clustering coefficient:**
	- Measures how connected neighboring nodes are
- § **Graphlet degree vector:**
	- Counts the occurrences of different graphlets

Useful for predicting a particular role a node plays in a graph:

Example: Predicting protein functionality in a protein-protein interaction network.

Learning Outcome

- ¡ **Traditional ML Pipeline**
	- Hand-crafted feature + ML model
- ¡ **Hand-crafted node features for graph data**
	- Node degree, centrality, clustering coefficient, graphlets

