Machine Learning Basics

COMP9312_23T2

About this topic

- Introduce basic knowledge about machine learning
- You need them to understand graph neural networks
- All concepts in this topic would not be in assignments/exam

Machine Learning ≈ Looking for Function

Speech Recognition

$$f($$
)= "Hello World"

Image Recognition

ChatGPT

$$f($$
 write a solution for my assignment 1 $) = "..."$

Two types of ML function

4

Some Classification Tasks

AlphaGo

ChatGPT

Machine Learning

- Algorithms that improve automatically through experience.
- The algorithm has a (large) number of parameters whose values need to be learned from the data.

Neurons and Perceptron

What does a Perceptron do? (1)

Suppose a NN initialized to weight w be (0.1, 0.2, 0.3) & bias b = 0.05

Step0: Take an input *x* (0.3, 0.6, 0.9)

What does a Perceptron do? (2)

Step1: Calculate a weighted sum

 $z = w^T x + b$; $z = 0.1 \times 0.3 + 0.2 \times 0.6 + 0.3 \times 0.9 + 0.05 = 0.47$

What does a Perceptron do? (3)

Step2: Apply an activation function

Neural Networks

Output Y is 1 if at least two of the three inputs are equal to 1.

Neural Networks (cont)

$$Y = I(0.3X_{1} + 0.3X_{2} + 0.3X_{3} - 0.4 > 0$$

where $I(z) = \begin{cases} 1 & \text{if } z \text{ is true} \\ 0 & \text{otherwise} \end{cases}$

Neural Networks (cont)

- Model is an assembly of interconnected nodes and weighted links
- Output node sums up each of its input value according to the weights of its links
- Compare output node against some threshold t
- The sign function (activation function) outputs a value +1 if its argument is positive and -1 otherwise.

Increase Expressive Power

From Perceptrons to NN

- Perceptrons are a basic unit of a neural network.
- 1-layered neural network on the right

Structure:

- Input layer, output layer,
- Middle are hidden layers.

A Case Study

What is the final mark of a student in 9312? (a regression problem)

f(student's mark for COMP9024) = ??

Where does the machine learn from?

Marks of many previous students for 9024 and 9312 (Supervised Learning)

Other types: unsupervised learning (NLP), semi-supervised learning, ...

How to get the function

- 1. Tell the machine what to learn (Parameters)
- 2. Tell the machine how to evaluate the function (Loss Function)
- 3. Wait ... (Training)

Step 1 - Parameters

1. Tell the machine what to learn (Parameters)

A linear function based on domain knowledge.

w and b are unknown parameters to learn.

Step 2 – Loss Function

2. Tell the machine how to evaluate the function (Loss Function)

 \hat{y} is the label (real value)

y is the estimation How good is a value / a function?

Loss:
$$L = \frac{1}{N} \sum_{n} e_{n}$$

 $e = |y - \hat{y}|$ *L* is mean absolute error (MAE) $e = (y - \hat{y})^2$ *L* is mean square error (MSE)

Step 2 – Loss Function

2. Tell the machine how to evaluate the function (Loss Function)

 $y = b + wx_1$

We aim to find a good w and b to minimize the loss function.

Loss:
$$L = \frac{1}{N} \sum_{n} e_{n}$$

 $e = |y - \hat{y}|$ *L* is mean absolute error (MAE) $e = (y - \hat{y})^2$ *L* is mean square error (MSE)

Step 3 - Training

How to get good parameters? $y = b + wx_1$

Gradient Descent.

Done by the toolkit (e.g., pytorch...).

Gradient Descent

$$y = b + wx_1 \quad w^*, b^* = \arg \min_{w,b} L$$
1. pick a random w^0
2. compute gradient $\frac{\partial L}{\partial w}|_{w=w^0}$
Negative -> increase w^0
Positive -> decrease w^0
3. Update w based on a hyperparameter η
 $w^1 \leftarrow w^0 - \eta \frac{\partial L}{\partial w}|_{w=w^0}$
4. Update w iteratively.
$$w^*, b^* = \arg \min_{w,b} L$$
Loss
A function between w and L.
 $w^0 \twoheadrightarrow w^1 = w^0$
 $w^0 \twoheadrightarrow w^1 = w^0$

Evaluate the function

Now we have a good linear function to predict the mark.

f(student's mark for COMP9024) = ??

Are linear models good enough?

Beyond Linear Models

Real problems are much more sophisticated.

How to get sophisticated functions

Combine simple functions in two ways: $f_1(x)+f_2(x) \qquad f_1(f_2(x))$

Combine linear functions? The result is still a linear function~ y=3x+1 y=5x+2 -> y=3(5x+2)+1=15x+7

Activation functions are required:

- Sigmoid
- Relu

Sigmoid Function

Combining Sigmoid Functions

Other activation functions

Leaky ReLU $\max(0.1x, x)$

 $\begin{array}{l} \textbf{Maxout} \\ \max(w_1^T x + b_1, w_2^T x + b_2) \end{array}$

Sigmoid and ReLU

$$y = b + \sum_{i} \frac{c_{i}}{sigmoid} \left(\frac{b_{i}}{b_{i}} + \sum_{j} \frac{w_{ij}x_{j}}{w_{ij}} \right)$$

$$y = b + \sum_{2i} c_i \max\left(0, b_i + \sum_j w_{ij} x_j\right)$$

Combine i Sigmoid functions

$$y = \underline{b} + wx_1 \longrightarrow y = b + \sum_i c_i sigmoid(\underline{b_i} + w_ix_1)$$

Combine i Sigmoid functions

$$y = \underline{b} + wx_1 \longrightarrow y = b + \sum_i c_i sigmoid(\underline{b_i} + w_ix_1)$$

Combine j features

$$y = b + \sum_{j} w_{j} x_{j} \longrightarrow y = b + \sum_{i} c_{i} sigmoid\left(\frac{b_{i} + \sum_{j} w_{ij} x_{i}}{j}\right)$$

$$y = b + \sum_{i} \frac{c_{i}}{sigmoid} \left(b_{i} + \sum_{j} w_{ij} x_{j} \right)$$

j is #features*i* is #sigmoid

j is #features*i* is #sigmoid

Minimize Loss

Multiple parameters

 $\boldsymbol{\theta}^* = \arg\min_{\boldsymbol{\theta}} L$

(Randomly) Pick initial values θ^0

$$g = \begin{bmatrix} \frac{\partial L}{\partial \theta_1} |_{\theta=\theta^0} \\ \frac{\partial L}{\partial L} |_{\theta=\theta^0} \\ \vdots \end{bmatrix} \begin{bmatrix} \theta_1^1 \\ \theta_2^1 \\ \vdots \end{bmatrix} \leftarrow \begin{bmatrix} \theta_1^0 \\ \theta_2^0 \\ \vdots \end{bmatrix} - \begin{bmatrix} \eta \frac{\partial L}{\partial \theta_1} |_{\theta=\theta^0} \\ \eta \frac{\partial L}{\partial \theta_2} |_{\theta=\theta^0} \\ \vdots \end{bmatrix}$$
$$g = \nabla L(\theta^0) \qquad \qquad \theta^1 \leftarrow \theta^0 - \eta g$$

Optional

Compute the Loss for all data?

$$\theta^* = \arg\min_{\theta} L$$
 Loss: $L = \frac{1}{N} \sum_{n} e_n$

- (Randomly) Pick initial values θ^0
- > Compute gradient $g = \nabla L(\theta^0)$ $\theta^1 \leftarrow \theta^0 - \eta g$
- Compute gradient $g = \nabla L(\theta^1)$ $\theta^2 \leftarrow \theta^1 \eta g$
- Repeat a set of iterations

Inefficient & ...

All Training Data	L N N
	UNSW COMP9312 2

Compute the Loss for all data?

Quiz

10,000 examples (N = 10,000)
Batch size is 10 (B = 10)

How many update in **1 epoch**?

<u>1,000 updates</u>

Machine Learning to Deep Learning

#Layers in GPT-3

https://jalammar.github.io/ how-gpt3-worksvisualizations-animations/

Deep vs Wide

generative pre-trained transformer

DL in real applications

Domain knowledge -> customized model (neural network)

Assume we have an image with 100 pixels A color can be represented by (256*256*256)

DL in real applications

Domain knowledge -> customized model (neural network)

Convolution Neural Network (CNN)

Learning Outcome

Understand the basic idea of ML and DL

Learn more details in **COMP9444**

