Machine Learning
Basics

COMP9312_23T2




t this topic

= |ntroduce basic knowledge about machine learning
= You need them to understand graph neural networks

= All concepts in this topic would not be in assignments/exam



e Learning =~ Looking for Function

Speech Recognition

f( —=—&— | )= “Hello World”

Image Recognition

f( ‘ )= “Cat”

ChatGPT

f( write a solution for my assignment 1 ) = “.7
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ine Learning

= Algorithms that improve automatically through experience.

= The algorithm has a (large) number of parameters whose
values need to be learned from the data.




ons and Perceptron
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This image by Felipe Perucho
Is lcensed under CC-BY 2.0




does a Perceptron do? (1)

Suppose a NN initialized to weight w be (0.1, 0.2, 0.3) & bias b =
0.05

Step0: Take an input x (0.3, 0.6, 0.9)

Input




does a Perceptron do? (2)

Step1: Calculate a weighted sum

z=wlx+b; z=0.1x0.3 + 0.2x0.6 + 0.3%0.9 + 0.05 = 0.47

Input




does a Perceptron do? (3)

Step2: Apply an activation function

Input
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al Networks

X | X, | X5 | Y Input Black box
110]0]0

X, —»
110 ] 1] 1 1
1 11| 0| 1 Output
101 1] 1
ool 1]o0 Ry Y
o|1]o0]o0
0 1| 1] 1 X Ly
o|lo|o]o 3

Output Y is 1 if at least two of the three inputs are equal to 1.



al Networks (cont)

Input

\:‘.\.‘s (
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Y = 71(0.3X, +0.3X, + 0.3X, — 0.4 > 0)

1 1f z1strue
where /(z) = 0 otherwise



Model is an assembly of inter-
Ic;olr(mec’ced nodes and weighted
inks

Output node sums up each of its
infput value according to the weights
of its links

Compare output node against some
threshold t

The sign function (activation
function) outputs a value +1 if its
argument is positive and -1
otherwise.
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al Networks (cont)

Input
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Black box

Output
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Perceptron Model

Y=I() wX,—1) o

Y = Sign(ZwiX . —1)



ase Expressive Power

From Perceptrons to NN
= Perceptrons are a basic unit of a neural network.
= T-layered neural network on the right

Structure:
= |nput layer, output layer,
= Middle are hidden layers.
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e Study

What is the final mark of a student in 93127 (a regression problem)

f(student's mark for COMP9024) = 7?7

Where does the machine learn from?
Marks of many previous students for 9024 and 9312 (Supervised Learning)

Other types: unsupervised learning (NLP), semi-supervised learning, ...



to get the function

1. Tell the machine what to learn (Parameters)
2. Tell the machine how to evaluate the function (Loss Function)

3. Wait ... (Training)
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1 - Parameters

1. Tell the machine what to learn (Parameters)

> <

A linear function based on domain knowledge.

weight : °

v
Yy =b+ wxg
A A

o

w and b are unknown parameters to learn. mark of 9024
training data

mark of 9312

> X



2 — Loss Function

2. Tell the machine how to evaluate the function (Loss Function)
Yy is the label (real value) v

y Is the estimation
How good is a value / a function?

1 o © +
| 0SS: L:Nzen /‘/:&—0—?"""/
n

e =|y— 79| Lismean absolute error (MAE)

mark of 9312

A >
e=(y— y)2 L is mean square error (MSE) mark of 9024



2 — Loss Function

2. Tell the machine how to evaluate the function (Loss Function)

3 y
y=b+wx; A ¥V =10+0.2%x

y=5+x,

We aim to find a good w and b
to minimize the loss function.

1
Loss: L = Nz en
n

e =|y— 79| Lismean absolute error (MAE)

mark of 9312

AN\ 2 . X
e = — MSE
(y —¥)“ L is mean square error (MSE) — 5094



3 - Training

How to get good parameters?
Yy =b+ wxg

Gradient Descent.

Done by the toolkit (e.g., pytorch...).
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Gradient Descent Optional

y=b+wx; w*b*= argmin L
w,

1. pick a random w? Loss
oL

aw ="

2. compute gradient

Negative -> increase w°

Positive -> decrease w° A function between w and L.

3. Update w based on a hyperparameter 7
. 0 dL
whew? ===,y

>

WO + Wl W*

4. Update w iteratively. 1 is also called learning rate.
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ate the function

Now we have a good linear function to predict the mark.

f(student’s mark for COMP9024) = 7?7

Are linear models good enough?
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mark of 9312

Y
A

mark of 9024




nd Linear Models

Real problems are much more sophisticated.

Y
A

This is what you expect.

> X
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> X
Real scenarios may be terrible ...



to get sophisticated functions

Combine simple functions in two ways:

F1(x)+£,(x) F1(£2(x))

Combine linear functions? The result is still a linear function~
y=3x+1 y=5x+2 —> y=3(5x+2)+1=15x+7

Activation functions are required:
= Sigmoid
= Relu
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oid Function

red curve = constant + sum of a set of_/_

.
llll
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oid Function

How to represent

this function? Hard Sigmoid
Sigmoid Function |
B 1 R
y==C 1 4+ e—(b+wxq) ‘o“

= ¢ sigmoid(b + wxq) .

2 ““
- >
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ining Sigmoid Functions

c, sigmoid (b, + wixq)

-
“““

y=b+ ) c; sigmoid(b; + w;x,)

0~ 00

¢, sigmoid(b, + w,xq) e
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r activation functions

Sigmoid | Leaky RelLU )
o(z) = i max(0.1z, x)

-10 * 10 Bre— il 10
tanh Maxout
tanh(x) = . max(wi  + by, wd T + bs)
RelLU ELU /

T % >0

max (0, x) / m {a(ex ) med st




')id and RelL U

y=b+ z C; Sigmoid‘ b; + z Wijxj>
L J

y:b+zcimax O,bl+ZWUx]>
2i ; j




odel

Combine i Sigmoid functions

y=b+wx, =p y=>b+ z c; sigmoid(b; + w;x;)

I
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odel

Combine i Sigmoid functions

y=b+wx, =p y=>b+ z c; sigmoid(b; + w;x;)

Combine j features R :

y=b+ ) wx; = y = b+zci sigmoid (b- + WX)
. z :




y=>b+ 2 C; Sigmoidé(bi + z Wijx]'>
i : ' :

i1y = by +wiiXy + WipXy + Wigxs

o j is #features

1 is #sigmoid

: : by
: w; ;- weight for x; for i-th sigmoid




odel y=b+ ) cisigmoid (bi+2wi,-x,->§
[ . j .

j is #features

1 is #sigmoid

Clz‘_f‘_'l"z
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y =§b + 2 c; sigmoid (bi + 2 Wijxj>
: : . :

e e Y :

j is #features

1 is #sigmoid
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ize Loss

\
label  V

Parameters to learn

1
Loss: L = Nz e,
n
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Multiple parameters W Optional
1
v/
* . 0 — 2
0" =arg mé}nL 0,
(Randomly) Pick initial values 8° .
0L | | - JL
—— |p_pO . . _
661 0=0 811 0](? N 891 |9=00
g =|oL o1 <[00 —| oL
gradient 532|9=9° : : nﬁb:eo

g = VL(HO) 0l — 9° — ng
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ute the Loss for all data?

_ 1
0" =argminL  Loss: L= NZ: e,
n

= (Randomly) Pick initial values 8°

> Compute gradient g = VL(8°)
6" — 6° —ng

» Compute gradient g = VL(01)
6% < 6" —ng

= Repeat a set of iterations

Inefficient & ...
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ute the Loss for all data?

_ 1
0" =argminL  Loss: L= NZ: e,
n

*

= (Randomly) Pick initial values 6"

*

= Compute gradient g = VL' (0%) L' -
update 6! < 0° —ng

= Compute gradient g = VL?(0') L? -
update 92 — 9! — g

= Compute gradient o =v/.°(62) **

update 03 < 6% — 1
1 epoch = see all the batches once

39




= 10,000 examples (N =10,000)
= Batch sizeis 10 (B = 10)
How many update in 1 epoch?

1,000 updates

40



ine Learning to Deep Learning

j is #features

1 is #sigmoid

T y=b+ z c; sigmoid <bi + 2 Winj)
; J

Real relationships are more complex. 1




hidden layer hidden layer

- A «— f

- a3+ f
\@ ET] Neuron EE

Neural Network Deep means many layers




ers in GPT-3

a robot must obey the orders given it

cpro 0 OO HEE BN BN BN BN e

P

—h

Transformer Decoder

Transformer Decoder

Yo Yo

6 Transformer Decoder

(=

U

v v \4 \4 \ 4 v v \4

generative pre-trained transformer
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https://jalammar.github.io/
how-gpt3-works-
visualizations-animations/

Deep vs Wide



real applications

Domain knowledge -> customized model (neural network)

RG B Xi

Xk

100x 100 x 3 100

Assume we have an image with 100 pixels
A color can be represented by (256*256*256)
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real applications

Domain knowledge -> customized model (neural network)

Convolution Neural Network (CNN)

e
Prid

- Pooling Pooling Pooling

SoftMax

Convolution Convolution  Convolution Pﬁﬁtr']‘éatit(')%"
+ + +
Kernel RelU RelU RelU
Fully
Feature Maps > - Connected——/
Layer
|| | | |
Feature Extraction Classification PD‘:‘S’Rf‘tE’J't'g'nC
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ing Outcome

Understand the basic idea of ML and DL

Learn more details in COMP9444
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