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Distributed Processing is Non-Trivial 

How to assign tasks to different workers in an efficient way?

What happens if tasks fail?

How do workers exchange results?

How to synchronize distributed tasks allocated to different 

workers?
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Big Data Tools
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Apache Hadoop Ecosystem

We focus on the distributed computing model and algorithms. 
Explore more in COMP9313~
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MapReduce for General Big Data Processing

Origin from Google
[OSDI’04] MapReduce: Simplified Data Processing on Large Clusters

Programming model for parallel data processing
For large-scale data processing
• Exploits large set of commodity computers
• Executes process in a distributed manner
• Offers high availability

Hadoop MapReduce is an implementation of MapReduce
• MapReduce is a computing paradigm (Google)
• Hadoop MapReduce is an open-source software

5
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Typical Big Data Problem
Iterate over a large number of records

Extract something of interest from each

Shuffle and sort intermediate results

Aggregate intermediate results

Generate final output

Key idea: provide a functional abstraction for these two 
operations

Map

Red
uce
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Idea of MapReduce
Inspired by the map and reduce functions in functional programming

We can view map as a transformation over a dataset
• This transformation is specified by the function f
• Each functional application happens in isolation 
• The application of f to each element of a dataset can be parallelized in a straightforward 

manner

We can view reduce as an aggregation operation
• The aggregation is defined by the function g
• Data locality: elements in the list must be “brought together” 
• If we can group elements of the list, also the reduce phase can proceed in parallel

The framework coordinates the map and reduce phases:
• Grouping intermediate results happens in parallel
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MapReduce Data Flow in Hadoop
1. Mappers read from HDFS
2. Map output is partitioned by key and sent to Reducers
3. Reducers sort input by key
4. Reduce output is written to HDFS
Intermediate results are stored on local FS of Map and Reduce workers

8



UNSW COMP9312_23T2

MapReduce Example - WordCount
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BFS (SSSP for Unweighted Graphs)
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Intuition for parallel BFS
We consider unweighted graphs (BFS) below for simplicity.
Solution to the problem can be defined inductively
Here’s the intuition:

• DISTANCETO(s) = 0

• For all neighbors p of s, 
DISTANCETO(p) = 1

• For every node u which is the neighbor of some other set of nodes M, DISTANCETO(u) = 1 + 
min(DISTANCETO(m), m ÎM)

s

m3

m2

m1

n

…

…

…

d1

d2

d3
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Visualizing Parallel BFS

n0

n3 n2

n1
n7

n6

n5
n4

n9

n8
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From Intuition to Algorithm
Data representation:
• Key: node n
• Value: d (distance from start), adjacency list (list of nodes reachable from n)
• Initialization: for all nodes except for start node, d = ¥

Mapper:
• "m Î adjacency list: emit (m, d + 1)

Sort/Shuffle
• Groups distances by reachable nodes

Reducer:
• Selects minimum distance path for each reachable node
• Additional bookkeeping needed to keep track of actual path

13
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BFS in MapReduce
class Mapper

method Map(nid n, node N)
d ← N.Distance
Emit(nid n,N.AdjacencyList) //Pass along graph structure
for all nodeid m ∈ N.AdjacencyList do

Emit(nid m, d+1) //Emit distances to reachable nodes

class Reducer
method Reduce(nid m, [d1, d2, . . .])
dmin←∞
M ← ∅
for all d ∈ counts [d1, d2, . . .] do

if IsNode(d) then
M.AdjacencyList← d //Recover graph structure

else if d < dmin then //Look for shorter distance
dmin← d

M.Distance← dmin //Update shortest distance
Emit(nid m, node M)

14
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Multiple Iterations Needed
The input of Mapper is the output of Reducer in the previous iteration.

Multiple iterations are needed to explore entire graph.

Preserving graph structure:
• Problem: Where did the adjacency list go?
• Solution: mapper emits (n, adjacency list) as well

15
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MapReduce for Graphs?

Graph algorithms are expressed in multiple MR 
iterations.

Data must be reloaded and reprocessed at each 
iteration.

Need an extra MR Job for each iteration to 
detect termination condition.

Workload unbalance by various vertex degree

Graph Computing Paradigm:

For each vertex:

 do something;

 notify 

neighbors;

16
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Iterative MapReduce

 Only a subset of data needs computation:
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Iterative MapReduce

 System is not optimized for iteration:
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Pregel for Distributed Graph Processing

Developed by Google

Computing in Bulk Synchronous Parallel (BSP) model

Computes in vertex-centric fashion

Scalable and fault tolerant

Reference: https://research.google/pubs/pub37252/

Many implementations:

Apache Giraph (Java), Pregel ++ (C/C++), …

19
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Pregel for Distributed Graph Processing

Think Like a Vertex Model

20
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Bulk Synchronous Parallel (BSP)

- Computations are consist of a sequence of iterations, called superstep.

- During superstep, framework calls user-defined computation function on every 

vertex.

- Computation function specifies behavior at a single vertex V in a superstep.

- Supersteps end with barrier synchronization.

- All communications are from superstep S to superstep S+1.

21
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Bulk Synchronous Parallel (BSP)

Terminates when all vertices are inactive or no messages to be delivered

22
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Vertex in Pregel
- Can mutate local value and value on outgoing edges.

- Can send arbitrary number of messages to any other vertices.

- Receive messages from previous superstep.

- Can mutate local graph topology.

- All active vertices participate in the computation in a superstep.

23
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Messages
• Consists of a message value and destination vertex.

• Typically sent along outgoing edges.

• Can be sent to any vertex whose identifier is known.

• Are only available to receiver at the beginning of superstep.

• Guaranteed to be delivered.
• Guaranteed not to be duplicated.

• Can be out of order.

24
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Vertex in Pregel
Initially, every vertices are active.

- A vertex can deactivate itself by vote to halt.

- Deactivated vertices don't participate in computation.

- Vertices are reactivated upon receiving  message.

25
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The C++ API of Pregel

Override this!

in msgs

out msg

Modify vertex value

26
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Implementation for SSSP

27
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Combiner in Pregel
• Sending messages incurs overhead.

• System calls Combine() for several messages intended for a vertex 
into a single message containing the combined message.

• No guarantees which messages will be combined or the order of 
combination.

• Should be enabled for commutative and associative messages.

• Not enabled by default.

37
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Combiner in Pregel (Cont.)

Reduce message traffic and disk space

38
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Combiner in SSSP
class MinIntCombiner : public Combiner<int> {

 virtual void Combine(MessageIterator* msgs) {

  int mindist = INF;
  for (; !msgs->Done(); msgs->Next())

   mindist = min(mindist, msgs->Value());
  Output("combined_source", mindist);

 }

};
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Others in Pregel

• Aggregator

• Used for global communication, global data and monitoring

• Topology Mutations

• Fault Tolerance

• Checking point, failure detection, recovery . . .
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Pagerank
Used to determine the importance of a document based on the number of 
references to it and the importance of the source documents themselves.

A = A given page
T1 …. Tn = Pages that point to page A (citations)
d = Damping factor between 0 and 1 (usually kept as 0.85)
C(T) = number of links going out of T
PR(A) = the PageRank of page A (initialized as 1/N for each page)

𝑃𝑅 𝐴 =
1 − 𝑑
𝑁

+ 𝑑(
𝑃𝑅 𝑇!
𝐶 𝑇!

+
𝑃𝑅 𝑇"
𝐶 𝑇"

+⋯+
𝑃𝑅 𝑇#
𝐶 𝑇#

)
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Pagerank

42
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Pagerank in Pregel
Superstep 0: Value of each vertex is 1/NumVertices()

virtual void Compute(MessageIterator* msgs) {
  if (superstep() >= 1) {
   double sum = 0;
   for (; !msgs->done(); msgs->Next())
    sum += msgs->Value();
   *MutableValue() = 0.15/NumVertices() + 0.85 * sum;
  }

  if (supersteps() < 30) {
   const int64 n = GetOutEdgeIterator().size();
   SendMessageToAllNeighbors(GetValue() / n);  } 
else {

   VoteToHalt();
  }
}
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Combiner for Pagerank?
virtual void Combine(MessageIterator* msgs) {

}
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Combiner for Pagerank?
virtual void Combine(MessageIterator* msgs) {

  double sum = 0;
  for (; !msgs->Done(); msgs->Next())
   sum += msgs->value();
  Output("combined_source", mindist);

}
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Core Decomposition

For each unvisited vertex u with the 
lowest degree in G 

assign core(u) as degree(u);
mark u as visited;

decrease the degree of its 
unvisited neighbors with higher 
degree than u by 1;

The peeling algorithm for core decomposition is hard to parallelize.
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Core Decomposition: ReviewFigure 3: Percentage of updated vertices (left) and max di↵erence from the true coreness (right).

Figure 4: The graph of Fig. 1 where letters have been re-
placed by numbers.

Now see array b. We have, for instance, b[2] = 1 and
b[3] = 7. This is because the block of vertices with degree 2
starts at index 1 in D, and the block of vertices with degree
3 starts at index 7 in D.

Finally, array p stores for each vertex i its position in D.
For instance, vertex 1 is in position 7 in D, thus, p[1] = 7.

Now, the BZ algorithm is given in Algorithm 4.
In line 2, arrays d, b, D, and p are initialized. The main

algorithm is in lines 3–17.
The top for-loop runs for each vertex, 1 to n, scanning

array D. The coreness of current vertex v is the current
degree of v, i.e. d[v]. Now v is logically deleted. For this,
we process each neighbor u of v with a higher degree.

Vertex u needs to have its degree decremented (see line
13). However before that, u needs to be moved to the block
on the left in D since its degree will be one less. This is
achieved in constant time (see lines 7-12). Specifically, u is
swapped with the first vertex, w, in the same block in D.
Also, the positions of u and w are swapped in p. Then, the
block index in b is updated incrementing it by one (line 13),
thus losing the first element of the block, u, which becomes
the last element of the previous block.

The complexity of the main algorithm is O(m).
The initialization of d, b, D, and p in [6] is done using

a somewhat complicated procedure in order to keep the ini-
tialization in O(n). A much simpler way is the procedure

index d b D p
1 3 0 5 7
2 4 1 6 10
3 7 7 7 16
4 4 10 8 11
5 2 13 10 1
6 2 15 15 2
7 2 16 1 3
8 2 9 4
9 3 13 8

10 2 2 5
11 5 4 13
12 6 14 15
13 3 11 9
14 4 16 12
15 2 12 6
16 5 3 14

Table 2: Arrays d, b, D, and p in the BZ algorithm for the
graph in Fig. 4 .

Algorithm 4 k-core computation using a flat array D

1: function k-cores(Graph G)
2: initialize(d,b,D,p, G)
3: for all i 1 to n do
4: v  D[i]
5: for all u 2 NG(v) do
6: if d[u] > d[v] then
7: du d[u], pu p[u]
8: pw  b[du], w  D[pw]
9: if u 6= w then
10: D[pu] w, D[pw] u

11: p[u] pw, p[w] pu

12: end if
13: b[du]++, d[u]��
14: end if
15: end for
16: end for
17: return d
18: end function
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Question:
Compute the core number of each vertex

Solution:
Iteratively remove the vertex with the 
smallest degree
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Core Decomposition: Review

Locality Theorem: 
Given a vertex and its core number k:
There exists at least k neighbors with core number k;
There does not exist k+1 neighbors with core number k+1.

4
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3

3

2

Core(V) = 3

4

v6

3

3
4 neighbors with core number at least 3

Core(V) = 4 Only 2 neighbors with core number at least 4

4

v6
√

×

Montresor, Alberto, Francesco De Pellegrini, and Daniele Miorandi. "Distributed k-core decomposition." IEEE 
Transactions on parallel and distribuated systems 24.2 (2013): 288-300.
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Quiz
What is the core number of v?
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Core Decomposition Pregel
virtual void Compute(MessageIterator* msgs) {
 
 oldValue = GetValue()

 *MutableValue() = compute core number from the neighbor’s core 
numbers in msgs based on the locality theorem

 
 
 if (GetValue() != oldValue){
   SendMessageToAllNeighbors(GetValue());
 }
 VotetoHalt();
}
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ID

Core Decomposition: Local-view (Converging)

v0

v1

v6

v3

v2
v4

v7

v5

v8

Initialize the core number by degree Iteration 1: all vertices are activated

Given a vertex and its core number k:
There exists at least k neighbors with core number k;
There does not exist k+1 neighbors with core number k+1.

0 1 2 3 4 5 6 7 8

Core 3 3 4 6 3 5 3 2 1

51



UNSW COMP9312_23T2

ID

Core Decomposition: Local-view (Converging)

v0

v1

v6

v3

v2
v4

v7

v5

v8

Initialize the core number by degree

Given a vertex and its core number k:
There exists at least k neighbors with core number k;
There does not exist k+1 neighbors with core number k+1.

0 1 2 3 4 5 6 7 8

Core 3 3 4 6 3 5 3 2 1
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ID

Core Decomposition: Local-view (Converging)

v0

v1

v6

v3

v2
v4

v7

v5

v8

Initialize the core number by degree Iteration 1 finishes. All vertices are activated.

Given a vertex and its core number k:
There exists at least k neighbors with core number k;
There does not exist k+1 neighbors with core number k+1.

0 1 2 3 4 5 6 7 8

Core 3 3 3 3 3 3 2 2 1
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ID

Core Decomposition: Local-view (Converging)

v0

v1

v6

v3

v2
v4

v7

v5

v8

Initialize the core number by degree Iteration 2

Given a vertex and its core number k:
There exists at least k neighbors with core number k;
There does not exist k+1 neighbors with core number k+1.

0 1 2 3 4 5 6 7 8

Core 3 3 3 3 3 3 2 2 1
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ID

Core Decomposition: Local-view (Converging)

v0

v1

v6

v3

v2
v4

v7

v5

v8

Initialize the core number by degree Iteration 2 finishes. v3, v4, v6, v7, and v8 are activated.

Given a vertex and its core number k:
There exists at least k neighbors with core number k;
There does not exist k+1 neighbors with core number k+1.

0 1 2 3 4 5 6 7 8

Core 3 3 3 3 3 2 2 2 1
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ID

Core Decomposition: Local-view (Converging)

v0

v1

v6

v3

v2
v4

v7

v5

v8

Initialize the core number by degree Iteration 3. 

Given a vertex and its core number k:
There exists at least k neighbors with core number k;
There does not exist k+1 neighbors with core number k+1.

0 1 2 3 4 5 6 7 8

Core 3 3 3 3 3 2 2 2 1
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ID

Core Decomposition: Local-view (Converging)

v0

v1

v6

v3

v2
v4

v7

v5

v8

Initialize the core number by degree Iteration 3 finishes. 

Given a vertex and its core number k:
There exists at least k neighbors with core number k;
There does not exist k+1 neighbors with core number k+1.

0 1 2 3 4 5 6 7 8

Core 3 3 3 3 2 2 2 2 1
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ID

Core Decomposition: Local-view (Converging)

v0

v1

v6

v3

v2
v4

v7

v5

v8

Initialize the core number by degree Terminate after iteration 4: no vertex updates 

Given a vertex and its core number k:
There exists at least k neighbors with core number k;
There does not exist k+1 neighbors with core number k+1.

0 1 2 3 4 5 6 7 8

Core 3 3 3 3 2 2 2 2 1
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Optimization?
virtual void Compute(MessageIterator* msgs) {
 
 oldValue = GetValue()

 *MutableValue() = compute core number from the neighbor’s core 
numbers in msgs based on the locality theorem

 
 
 if (GetValue() != oldValue){
   SendMessageToAllNeighbors(GetValue());
 }
 VotetoHalt();
}

59



UNSW COMP9312_23T2

Connected Component Detection in Pregel

A basic distributed algorithm to compute connected components:

virtual void Compute(MessageIterator* msgs) {
  int minID = GetValue();
  for (; !msgs->done(); msgs->Next())
   minID = min(minID,msg->Value());
  }
  if (minID < GetValue()){
   *MutableValue() = minID;
    SendMessageToAllNeighbors(minID);
  }
  VoteToHalt();
  
}
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Learning Outcome

§ Understand the framework of Pregel

§ Understand the combiner optimization

§ Understand the distributed core decomposition algorithm
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