
UNSW COMP9312_23T2

Time Complexity: Recap

§ Correct
§ amortized/average/expected vs worst case

§ Simplified
§ If a >= b, O(a+b) -> O(a)

§ Tight
§ time complexity to scan neighbors of a node u (adjacency list): O(deg(u))

1

UNSW COMP9312_23T2

Assignment 1 Review

Q4:
O(m)

Q5:
First-In-First-Out

2

UNSW COMP9312_23T2

2-Hop Recap: Reachability

𝑂(|𝐿!"# 𝑢 | + |𝐿$% 𝑣 |) : Precomputed order + merge join

Query Time Complexity: L is the average number of labels of a node
O(L)

Index Space:
O(n*L)

3

UNSW COMP9312_23T2

2-Hop Recap: Reachability

For each node u in the graph from high-degree to low-degree:

• add u into both Lin(u) and Lout(u);

• mark u as processed;

• conduct BFS from u and for each reached node w:

- if (u,w) has been covered or rank(w)<rank(u): stop exploring out-neighbors of w;

- else: add u into Lin(w);

• conduct reverse BFS from u and for each reached node w’:

- if (w’,u) has been covered or rank(w’)<rank(u): stop exploring in-neighbors of w’;

- else: add u into Lout(w’);

4

O(n*m+n2*L)

UNSW COMP9312_23T2

2-Hop Recap: Reachability

5 UNSW COMP9312_23T2

1st round: process j
Lout(a) = (j);
Lout(b) = (j);
Lout(c) = (j);
Lout(i) = (j);
Lout(j) = (j);

Lin(j) = (j);
Lin(k) = (j);
Lin(g) = (j);
Lin(h) = (j);
Lin(l) = (j);

2nd round: process c
Lout(a) = (j,c);
Lout(b) = (j,c);
Lout(c) = (j,c);
Lout(i) = (j);
Lout(j) = (j);

Lin(c) = (c);
Lin(d) = (c);
Lin(e) = (c);
Lin(f) = (c);
Lin(i) = (c);
Lin(j) = (j);
Lin(k) = (j);
Lin(g) = (j);
Lin(h) = (j);
Lin(l) = (j);

fb d ea c hg

ki
j

pruned

pruned

l

UNSW COMP9312_23T2

Structural Diversity

Required knowledge from Topics 0—3

Feel free to discuss the question with your tutors …

6

Cohesive Subgraphs
Detection
COMP9312_23T2

UNSW COMP9312_23T2

Outline
- Basic Concepts

- Applications

- Models and Algorithms

8

UNSW COMP9312_23T2

Community structure in graphs
Community structure: a cohesive group of nodes that are connected
"more densely" to each other than to the nodes in other communities

- Within-group (intra-group) edges.
High density

- Between-group (inter-group) edges.
Low density

Community structures are quite common in real networks.

9

UNSW COMP9312_23T2

Finding Communities
Who tend to work together

Co-author network

Machine learning Data Mining

Information Retrieval

Q.Mei, D.Cai, D.Zhang, and C.Zhai, Topic Modeling with Hitting Time, WWW 2008

10

UNSW COMP9312_23T2

Finding Communities (Facebook or Twitter)

[McAuley, Leskovec: Discovering social circles in ego networks, 2012]

11

UNSW COMP9312_23T2

How to measure group cohesion?

q Mutuality of ties

- everybody in the group knows everybody else (clique)

q frequency of ties among members

- everybody in the group has links to at least k others in the group (k-core)

q Others: density, quasi-clique, k-truss, k-edge connected component, etc.

12

UNSW COMP9312_23T2

Cohesive Subgraphs

In some models, a value 𝑘 can be used to capture the cohesiveness of the
subgraph. For example, 𝑘-core is a maximal subgraph in which each vertex has
at least k neighbors in the subgraph.

13

UNSW COMP9312_23T2

Application Summary
• Network Modeling and Analysis

• Network Visualization

• Reasoning the Collapse of a Network

• Discovering Influential Nodes

• Community Discovery

• Anomaly Detection

• Protein Function Prediction

• ……

14

UNSW COMP9312_23T2

Application – Community Discovery

Social networks: persistent community search [ICDE 2018], spatial community search
[ICDE 2018], attributed community detection [VLDB 2017] [VLDB 2017] [VLDB 2018] ,
influential community search [VLDB 2015]

Communities in GowallaA geo-social network

15

UNSW COMP9312_23T2

Application – Network Modeling and Analysis

Complex networks: pattern and anomaly analysis using k-core analysis
[ICDM 2016] [KAIS 2018]

16

UNSW COMP9312_23T2

Application – Network Modeling and Analysis

Social networks: modeling engagement dynamics in social graphs [CIKM
2013] [Social Networks 1983]

17

UNSW COMP9312_23T2

Application – Discovering Influential Nodes

The most effective spreaders are located in the core of the network,
fairly independent of their degree. Influence of the infection probability beta on the
spreading efficiency M of nodes, grouped according to their k-shell values [Nature
Physics 2010]

18

UNSW COMP9312_23T2

Application – Reasoning the Evolvement of a Social Network

Friendster network: revealing the mechanism of collapse [SNAM 2017] [COSN 2013]

19

UNSW COMP9312_23T2

Application – Fraud Detection

Lyu B, Qin L, Lin X, et al. Maximum Biclique Search at Billion Scale[J]. Proc. VLDB Endow., 2020, 13(9):
1359-1372. [Best paper runner-up award in VLDB 2020]

User-item networks:

Challenges：
• Billions of buyers and productions, 10+ billions of transactions
• Dynamic data

Solution：Efficient biclique detection on bipartite graph
Outcome: Significantly increase the recall by 40% in double 11 festival in 2017

20

UNSW COMP9312_23T2

Application –Group Recommendation

Customer-movie network:

Ding D, Li H, Huang Z, et al. Efficient fault-tolerant group recommendation using alpha-beta-core[C] CIKM

21

Liu B, Yuan L, Lin X, et al. Efficient (α, β)-core computation: An index-based approach[C], CIKM. 2019: 1130-1141.

UNSW COMP9312_23T2

Application – Team Formation

Author-paper networks: analyzing the relationships between groups of
collaborators in the same institution

22

Sarıyüce A E, Pinar A. Peeling bipartite networks for dense subgraph discovery[C]//Proceedings of the
Eleventh ACM International Conference on Web Search and Data Mining. 2018: 504-512.

UNSW COMP9312_23T2

More Applications
• Graph clustering
 Giatsidis, Christos, et al. "Corecluster: A degeneracy based graph clustering

framework." AAAI. 2014.

• Graph similarity
 Nikolentzos, Giannis, et al. "A Degeneracy Framework for Graph Similarity." IJCAI. 2018.

• Community evaluation
 Giatsidis, Christos, Dimitrios M. Thilikos, and Michalis Vazirgiannis. "Evaluating

cooperation in communities with the k-core structure." ASONAM, 2011.

• Influence maximization
 Elsharkawy, Sarah, et al. "Effectiveness of the k-core nodes as seeds for influence

maximisation in dynamic cascades." International Journal of Computers 2 (2017).

• Graph generating
 Baur, Michael, et al. "Generating graphs with predefined k-core structure." Proceedings of

the European Conference of Complex Systems. 2007.

23

UNSW COMP9312_23T2

Degree-based Models:
K-Core and its Variants

UNSW COMP9312_23T2

K-Core

K-core is a maximal connected subgraph in which each vertex
has at least k neighbors in the subgraph.

Erdős, Paul, and András Hajnal. "On chromatic number of graphs and set-systems." Acta
Mathematica Hungarica 17.1-2 (1966): 61-99.

25

UNSW COMP9312_23T2

K-Core

Maximal subgraph is the once that cannot include more vertices.
Maximum subgraph is the one with the most vertices.

26

Maximum Maximal

Maximal

UNSW COMP9312_23T2

Graph Degeneracy (𝑘!"#)

The largest k such that the k-core is not empty, which is also
called the degeneracy.

27

UNSW COMP9312_23T2

Computing k-Core

Iteratively remove every vertex whose degree is less than k.
𝑂(𝑚 + 𝑛)

28

UNSW COMP9312_23T2

Computing k-Core

Iteratively remove every vertex whose degree is less than k.
𝑂(𝑚 + 𝑛)

29

UNSW COMP9312_23T2

Computing k-Core

Iteratively remove every vertex whose degree is less than k.
𝑂(𝑚 + 𝑛)

30

UNSW COMP9312_23T2

Computing k-Core

Iteratively remove every vertex whose degree is less than k.
𝑂(𝑚 + 𝑛)

31

UNSW COMP9312_23T2

Example: Online k-core computation

Iteratively remove every vertex whose degree is less than k.

Find 3-core in this graph:

1

2

3 4

5

67

98

10

11

12

1314
vertex 1 2 3 4 5 6 7 8 9 10 11 12 13 14

Delete F F F F F F F F F F F F F F

This table lists the status of the vertices:

32

UNSW COMP9312_23T2

1

2

3 4

5

67

98

10

11

12

1314
vertex 1 2 3 4 5 6 7 8 9 10 11 12 13 14

Delete T F F F F F F F T T F F F F

deg(v1)=1, deg(v9)=2, deg(v10)=1.
The degree of vertex 1, 9, 10 are smaller than
3, so we need to delete them.

Example: Online k-core computation

Iteratively remove every vertex whose degree is less than k.

Find 3-core in this graph:

33

UNSW COMP9312_23T2

vertex 1 2 3 4 5 6 7 8 9 10 11 12 13 14

Delete T T F F F F F T T T F F F F

deg(v2)=2, deg(v8)=2.
The degree of vertex 2, 8 is smaller than 3, so
we need to delete them.

2

3 4

5

67

8

11

12

1314

Example: Online k-core computation

Iteratively remove every vertex whose degree is less than k.

Find 3-core in this graph:

34

UNSW COMP9312_23T2

vertex 1 2 3 4 5 6 7 8 9 10 11 12 13 14

Delete T T T F F F F T T T F F F F

deg(v3)=2.
The degree of vertex 3 is smaller than 3, so we
need to delete it.

3 4

5

6711

12

1314

Example: Online k-core computation

Iteratively remove every vertex whose degree is less than k.

Find 3-core in this graph:

35

UNSW COMP9312_23T2

vertex 1 2 3 4 5 6 7 8 9 10 11 12 13 14

Delete T T T F F F F T T T F F F F

The degree of all vertices is greater than 3, so
the iteration is end. Then we get the result of
3-core.

4

5

6711

12

1314

Example: Online k-core computation

Iteratively remove every vertex whose degree is less than k.

Find 3-core in this graph:

36

UNSW COMP9312_23T2

Core Number

𝑘 𝑣 = the largest k such that the k-core contains 𝑣

Core number of a vertex 𝑣:

37

UNSW COMP9312_23T2

Core Decomposition
Compute the core number of every vertex.
Note: If we store the core number of every vertex offline, given a graph G and a parameter k,
all the vertices in the k-core (denoted as Ck(V, E)) of G can be returned in O(|V(Ck)|) time.

Tips: Store the vertices in decreasing order of their core numbers.

38

UNSW COMP9312_23T2

Core Decomposition (Cont.)

How to identify different groups?
There are two 3-cores in the example graph.

39

UNSW COMP9312_23T2

Core Decomposition: Methods

Global-view: peel low-degree vertices iteratively from the whole
graph (which we introduce here).

Local-view: update the upper bound of core number for each
vertex until converge.

40

UNSW COMP9312_23T2

Core Decomposition: Global-view (Peeling)

For each unvisited vertex u with the lowest
degree in G

assign core(u) as degree(u);
mark u as visited;
decrease the degree of its
unvisited neighbors with higher
degree than u by 1;

41

UNSW COMP9312_23T2

For each unvisited vertex u with the lowest
degree in G

assign core(u) as degree(u);
mark u as visited;
decrease the degree of its
unvisited neighbors with higher
degree than u by 1;

Core Decomposition: Global-view (Peeling)

42

UNSW COMP9312_23T2

Core Decomposition: Global-view (Peeling)

For each unvisited vertex u with the lowest
degree in G

assign core(u) as degree(u);
mark u as visited;
decrease the degree of its
unvisited neighbors with higher
degree than u by 1;

43

UNSW COMP9312_23T2

Core Decomposition: Global-view (Peeling)

For each unvisited vertex u with the lowest
degree in G

assign core(u) as degree(u);
mark u as visited;
decrease the degree of its
unvisited neighbors with higher
degree than u by 1;

44

UNSW COMP9312_23T2

Core Decomposition: Global-view (Peeling)

For each unvisited vertex u with the lowest
degree in G

assign core(u) as degree(u);
mark u as visited;
decrease the degree of its
unvisited neighbors with higher
degree than u by 1;

45

UNSW COMP9312_23T2

Core Decomposition: Global-view (Peeling)

For each unvisited vertex u with the lowest
degree in G

assign core(u) as degree(u);
mark u as visited;
decrease the degree of its
unvisited neighbors with higher
degree than u by 1;

46

UNSW COMP9312_23T2

Core Decomposition: Global-view (Peeling)

For each unvisited vertex u with the lowest
degree in G

assign core(u) as degree(u);
mark u as visited;
decrease the degree of its
unvisited neighbors with higher
degree than u by 1;

47

UNSW COMP9312_23T2

Core Decomposition: Global-view (Peeling)

For each unvisited vertex u with the lowest
degree in G

assign core(u) as degree(u);
mark u as visited;
decrease the degree of its
unvisited neighbors with higher
degree than u by 1;

48

UNSW COMP9312_23T2

Example: O(𝑛!) Algorithm for Core Decomposition

A

B

D C

E

F

G

HI

degree 1 3 4 3 2 5 4 3 3
vertex A B C D E F G H I

Iterate over all the vertices. For a deleting vertex v, if
the degree of its unvisited neighbor u is greater than
the degree of v, then decrease the degree of u by one.

49

UNSW COMP9312_23T2

A

B

D C

E

F

G

HI degree[B]>degree[A],
then degree[B]←degree[B]-1, degree[B]=2.

Start from the vertex A, A’s neighbor is B.

degree 1 3 4 3 2 5 4 3 3
vertex A B C D E F G H I

degree 1 2 4 3 2 5 4 3 3
vertex A B C D E F G H I

Example: O(𝑛!) Algorithm for Core Decomposition

50

UNSW COMP9312_23T2

A

B

D C

E

F

G

HI degree[C]>degree[B],
then degree[C] ←	degree[C]-1, degree[C]=3.
degree[D]>degree[B],
then degree[D] ←	degree[D]-1, degree[D]=2.

The next vertex is B, B’s unvisited neighbors are C and D.

degree 1 2 4 3 2 5 4 3 3
vertex A B C D E F G H I

degree 1 2 3 2 2 5 4 3 3
vertex A B C D E F G H I

Example: O(𝑛!) Algorithm for Core Decomposition

51

UNSW COMP9312_23T2

A

B

D C

E

F

G

HI
degree[C]>degree[D],
then degree[C] ←	degree[C]-1, degree[C]=2.
degree[G]>degree[D],
then degree[G] ←	degree[G]-1, degree[G]=3.

The next vertex with the smallest degree is D,
D’s unvisited neighbors are C and G.

degree 1 2 3 2 2 5 4 3 3
vertex A B C D E F G H I

degree 1 2 2 2 2 5 3 3 3
vertex A B C D E F G H I

Example: O(𝑛!) Algorithm for Core Decomposition

52

UNSW COMP9312_23T2

A

B

D C

E

F

G

HI
degree[E]=degree[C], then nothing would be changed.

degree[F]>degree[C],
then degree[F] ←	degree[F]-1, degree[F]=4.

The next vertex with the smallest degree is C,
C’s unvisited neighbor is E.

degree 1 2 2 2 2 5 3 3 3
vertex A B C D E F G H I

degree 1 2 2 2 2 4 3 3 3
vertex A B C D E F G H I

Example: O(𝑛!) Algorithm for Core Decomposition

53

UNSW COMP9312_23T2

A

B

D C

E

F

G

HI
degree[F]>degree[E],
then degree[F] ←	degree[F]-1, degree[F]=3.

The next vertex with the smallest degree is E,
E’s unvisited neighbor is F.

degree 1 2 2 2 2 4 3 3 3
vertex A B C D E F G H I

degree 1 2 2 2 2 3 3 3 3
vertex A B C D E F G H I

Example: O(𝑛!) Algorithm for Core Decomposition

54

UNSW COMP9312_23T2

A

B

D C

E

F

G

HI
degree[H]=degree[G], degree[I]=degree[G], degree[F]=degree[G], then
nothing would be changed.

The next vertex with the smallest degree is G,
G’s unvisited neighbors are F, H and I.

degree 1 2 2 2 2 3 3 3 3
vertex A B C D E F G H I

degree 1 2 2 2 2 3 3 3 3
vertex A B C D E F G H I

Example: O(𝑛!) Algorithm for Core Decomposition

55

UNSW COMP9312_23T2

A

B

D C

E

F

G

HI
degree[H]=degree[F], degree[I]=degree[F],
then nothing would be changed.

The next vertex with the smallest degree is F,
F’s unvisited neighbors are H and I.

degree 1 2 2 2 2 3 3 3 3
vertex A B C D E F G H I

degree 1 2 2 2 2 3 3 3 3
vertex A B C D E F G H I

Example: O(𝑛!) Algorithm for Core Decomposition

56

UNSW COMP9312_23T2

A

B

D C

E

F

G

HI
degree[I]=degree[H], then nothing would be changed.

The next vertex with the smallest degree is H, H’s unvisited neighbor is I.

degree 1 2 2 2 2 3 3 3 3
vertex A B C D E F G H I

degree 1 2 2 2 2 3 3 3 3
vertex A B C D E F G H I

Example: O(𝑛!) Algorithm for Core Decomposition

57

UNSW COMP9312_23T2

A

B

D C

E

F

G

HI

degree 1 2 2 2 2 3 3 3 3
vertex A B C D E F G H I

The decomposition process is complete.

Example: O(𝑛!) Algorithm for Core Decomposition

58

UNSW COMP9312_23T2

Quick exercise

Could you compute the core number of each vertex?

A

B

D C

E

F

G

59

UNSW COMP9312_23T2

The time complexity of the whole process is O(n2+m) = O(n2).

Need to get the vertex with minimum degree in each iteration:

Using heap (priority queue): O(m*log(n))
Using Fabonacci heap: O(m+n*log(n))

Any better solution?

Example: O(𝑛!) Algorithm for Core Decomposition

60

UNSW COMP9312_23T2

For each degree d, store all vertices with degree d using a doubly linked list
(DLL)

When the degree of a vertex u decreases, move u from old DLL to a new DLL.

Time complexity: O(m)
Drawback: cannot fully utilize CPU cache~

Core Decomposition using Doubly Linked List

61

UNSW COMP9312_23T2

Core Decomposition using Flat Array
A

B

D C

E

F

G

HI degree 1 2 3 3 3 3 4 4 5
vertex A E D B I H G C F

Iterate over all the vertices. If the degree of
neighbouring vertex u of vertex v is greater than the
degree of v, decrease the degree of u by 1. Then, for
the line 7, swap the positions of u and the first
vertex with the same degree as u’s original degree.
Because we use the bin sort, the time complexity of
reorder the array is O(n). Thus, the total time
complexity for core decomposition is O(m).

In order to achieve the time complexity of O(m), we first
sort all vertices according to their degree.

62

UNSW COMP9312_23T2

A

B

D C

E

F

G

HI

degree 1 2 3 3 3 3 4 4 5
vertex A E D B I H G C F

degree[B]>degree[A], then degree[B] ←	degree[B]-1, degree[B]=2,
swap the positions of B and the first vertex with the same degree as
B’s original degree (i.e., swap the position of B and D).

degree 1 2 2 3 3 3 4 4 5
vertex A E B D I H G C F

Loop according to the order of degrees in the table,
start from the vertex A with the minimum degree.

Core Decomposition using Flat Array

63

UNSW COMP9312_23T2

A

B

D C

E

F

G

HI For vertex C,
degree[C]>degree[E],
then degree[C] ←	degree[C]-1, degree[C]=3,
swap the position of C and G.

degree 1 2 2 3 3 3 3 4 5
vertex A E B D I H C G F

degree 1 2 2 3 3 3 4 4 5
vertex A E B D I H G C F

The next vertex in the table is E, E’s neighbors are C and F.

Core Decomposition using Flat Array

64

UNSW COMP9312_23T2

A

B

D C

E

F

G

HI For vertex F,
degree[F]>degree[E],
then degree[F] ←	degree[F]-1, degree[F]=4.

degree 1 2 2 3 3 3 3 4 4
vertex A E B D I H C G F

degree 1 2 2 3 3 3 3 4 5
vertex A E B D I H C G F

The next vertex in the table is E, E’s neighbors are C and F.

Core Decomposition using Flat Array

65

UNSW COMP9312_23T2

A

B

D C

E

F

G

HI
For vertex C,
degree[C]>degree[B],
then degree[C] ←	degree[C]-1, degree[C]=2.
Swap the position of C and D.

The next vertex in the table is B, B’s unvisited neighbors are C and D.

degree 1 2 2 3 3 3 3 4 4
vertex A E B D I H C G F

degree 1 2 2 2 3 3 3 4 4
vertex A E B C I H D G F

Core Decomposition using Flat Array

66

UNSW COMP9312_23T2

A

B

D C

E

F

G

HI For neighbor D,
degree[D]>degree[B],
then degree[D] ←	degree[D]-1, degree[D]=2.
Exchange the position of D and I.

The next vertex in the table is B, B’s neighbors are C and D.

degree 1 2 2 2 2 3 3 4 4
vertex A E B C D H I G F

degree 1 2 2 2 3 3 3 4 4
vertex A E B C I H D G F

Core Decomposition using Flat Array

67

UNSW COMP9312_23T2

A

B

D C

E

F

G

HI
For vertex D, the degree are equal to degree[C]
Then the order of table would not change.

degree[F] is updated to 3.
Exchange the position of F and G.

The next vertex in the table is C, C’s unvisited neighbors are D and F.

degree 1 2 2 2 2 3 3 4 4
vertex A E B C D H I G F

degree 1 2 2 2 2 3 3 3 4
vertex A E B C D H I F G

Core Decomposition using Flat Array

68

UNSW COMP9312_23T2

A

B

D C

E

F

G

HI

The next vertex in the table is D, D’s unvisited neighbor is G.

degree 1 2 2 2 2 3 3 3 4
vertex A E B C D H I F G

For vertex G,
degree[G]>degree[D],
then degree[G] ←	degree[G]-1, degree[G]=3.

degree 1 2 2 2 2 3 3 3 3
vertex A E B C D H I F G

Core Decomposition using Flat Array

69

UNSW COMP9312_23T2

A

B

D C

E

F

G

HI

The next vertex in the table is H, H’s unvisited neighbors are F, G and I.

For vertices F, G and I,
degree[F]=degree[G]= degree[H]=degree[I].
Then the order of table would not change.

degree 1 2 2 2 2 3 3 3 3
vertex A E B C D H I F G

degree 1 2 2 2 2 3 3 3 3
vertex A E B C D H I F G

Core Decomposition using Flat Array

70

UNSW COMP9312_23T2

A

B

D C

E

F

G

HI

The next vertex in the table is I, I’s unvisited neighbors are F and G.

For vertex F, G,
degree[F]=degree[G]= degree[I].
Then the order of table would not change.

degree 1 2 2 2 2 3 3 3 3
vertex A E B C D H I F G

Core Decomposition using Flat Array

71

UNSW COMP9312_23T2

A

B

D C

E

F

G

HI

The next vertex in the table is F, F’s unvisited neighbor is G

For vertex G, degree[G]=degree[F].
Then the order of table would not change.

degree 1 2 2 2 2 3 3 3 3
vertex A E B C D H I F G

Core Decomposition using Flat Array

72

UNSW COMP9312_23T2

A

B

D C

E

F

G

HI

The next vertex in the table is G, there is no G’s unvisited neighbor.

degree 1 2 2 2 2 3 3 3 3
vertex A E B C D H I F G

Core Decomposition using Flat Array

73

UNSW COMP9312_23T2

A

B

D C

E

F

G

HI

After we traverse all edges in this graph, we get
the core number of each vertex in O(m) time.

degree 1 2 2 2 2 3 3 3 3
vertex A E B C D H I F G

Core Decomposition using Flat Array

74

UNSW COMP9312_23T2

Core Decomposition using Flat Array

A
B

D C

E

F

G

HI

degree 1 2 3 3 3 3 4 4 5
vertex A E D B I H G C F

What we need to implement the O(m) algorithm

1. An array to sort vertices in non-decreasing order of degree

2. An array to locate the start position for each degree

3. An array to get the position of each vertex id

4. An array to maintain the degree of each vertex

75

UNSW COMP9312_23T2

An example
Figure 3: Percentage of updated vertices (left) and max di↵erence from the true coreness (right).

Figure 4: The graph of Fig. 1 where letters have been re-
placed by numbers.

Now see array b. We have, for instance, b[2] = 1 and
b[3] = 7. This is because the block of vertices with degree 2
starts at index 1 in D, and the block of vertices with degree
3 starts at index 7 in D.

Finally, array p stores for each vertex i its position in D.
For instance, vertex 1 is in position 7 in D, thus, p[1] = 7.

Now, the BZ algorithm is given in Algorithm 4.
In line 2, arrays d, b, D, and p are initialized. The main

algorithm is in lines 3–17.
The top for-loop runs for each vertex, 1 to n, scanning

array D. The coreness of current vertex v is the current
degree of v, i.e. d[v]. Now v is logically deleted. For this,
we process each neighbor u of v with a higher degree.

Vertex u needs to have its degree decremented (see line
13). However before that, u needs to be moved to the block
on the left in D since its degree will be one less. This is
achieved in constant time (see lines 7-12). Specifically, u is
swapped with the first vertex, w, in the same block in D.
Also, the positions of u and w are swapped in p. Then, the
block index in b is updated incrementing it by one (line 13),
thus losing the first element of the block, u, which becomes
the last element of the previous block.

The complexity of the main algorithm is O(m).
The initialization of d, b, D, and p in [6] is done using

a somewhat complicated procedure in order to keep the ini-
tialization in O(n). A much simpler way is the procedure

index d b D p
1 3 0 5 7
2 4 1 6 10
3 7 7 7 16
4 4 10 8 11
5 2 13 10 1
6 2 15 15 2
7 2 16 1 3
8 2 9 4
9 3 13 8

10 2 2 5
11 5 4 13
12 6 14 15
13 3 11 9
14 4 16 12
15 2 12 6
16 5 3 14

Table 2: Arrays d, b, D, and p in the BZ algorithm for the
graph in Fig. 4 .

Algorithm 4 k-core computation using a flat array D

1: function k-cores(Graph G)
2: initialize(d,b,D,p, G)
3: for all i 1 to n do
4: v D[i]
5: for all u 2 NG(v) do
6: if d[u] > d[v] then
7: du d[u], pu p[u]
8: pw b[du], w D[pw]
9: if u 6= w then
10: D[pu] w, D[pw] u

11: p[u] pw, p[w] pu

12: end if
13: b[du]++, d[u]��
14: end if
15: end for
16: end for
17: return d
18: end function

19

Figure 3: Percentage of updated vertices (left) and max di↵erence from the true coreness (right).

Figure 4: The graph of Fig. 1 where letters have been re-
placed by numbers.

Now see array b. We have, for instance, b[2] = 1 and
b[3] = 7. This is because the block of vertices with degree 2
starts at index 1 in D, and the block of vertices with degree
3 starts at index 7 in D.

Finally, array p stores for each vertex i its position in D.
For instance, vertex 1 is in position 7 in D, thus, p[1] = 7.

Now, the BZ algorithm is given in Algorithm 4.
In line 2, arrays d, b, D, and p are initialized. The main

algorithm is in lines 3–17.
The top for-loop runs for each vertex, 1 to n, scanning

array D. The coreness of current vertex v is the current
degree of v, i.e. d[v]. Now v is logically deleted. For this,
we process each neighbor u of v with a higher degree.

Vertex u needs to have its degree decremented (see line
13). However before that, u needs to be moved to the block
on the left in D since its degree will be one less. This is
achieved in constant time (see lines 7-12). Specifically, u is
swapped with the first vertex, w, in the same block in D.
Also, the positions of u and w are swapped in p. Then, the
block index in b is updated incrementing it by one (line 13),
thus losing the first element of the block, u, which becomes
the last element of the previous block.

The complexity of the main algorithm is O(m).
The initialization of d, b, D, and p in [6] is done using

a somewhat complicated procedure in order to keep the ini-
tialization in O(n). A much simpler way is the procedure

index d b D p
1 3 0 5 7
2 4 1 6 10
3 7 7 7 16
4 4 10 8 11
5 2 13 10 1
6 2 15 15 2
7 2 16 1 3
8 2 9 4
9 3 13 8

10 2 2 5
11 5 4 13
12 6 14 15
13 3 11 9
14 4 16 12
15 2 12 6
16 5 3 14

Table 2: Arrays d, b, D, and p in the BZ algorithm for the
graph in Fig. 4 .

Algorithm 4 k-core computation using a flat array D

1: function k-cores(Graph G)
2: initialize(d,b,D,p, G)
3: for all i 1 to n do
4: v D[i]
5: for all u 2 NG(v) do
6: if d[u] > d[v] then
7: du d[u], pu p[u]
8: pw b[du], w D[pw]
9: if u 6= w then
10: D[pu] w, D[pw] u

11: p[u] pw, p[w] pu

12: end if
13: b[du]++, d[u]��
14: end if
15: end for
16: end for
17: return d
18: end function

19

Figure 3: Percentage of updated vertices (left) and max di↵erence from the true coreness (right).

Figure 4: The graph of Fig. 1 where letters have been re-
placed by numbers.

Now see array b. We have, for instance, b[2] = 1 and
b[3] = 7. This is because the block of vertices with degree 2
starts at index 1 in D, and the block of vertices with degree
3 starts at index 7 in D.

Finally, array p stores for each vertex i its position in D.
For instance, vertex 1 is in position 7 in D, thus, p[1] = 7.

Now, the BZ algorithm is given in Algorithm 4.
In line 2, arrays d, b, D, and p are initialized. The main

algorithm is in lines 3–17.
The top for-loop runs for each vertex, 1 to n, scanning

array D. The coreness of current vertex v is the current
degree of v, i.e. d[v]. Now v is logically deleted. For this,
we process each neighbor u of v with a higher degree.

Vertex u needs to have its degree decremented (see line
13). However before that, u needs to be moved to the block
on the left in D since its degree will be one less. This is
achieved in constant time (see lines 7-12). Specifically, u is
swapped with the first vertex, w, in the same block in D.
Also, the positions of u and w are swapped in p. Then, the
block index in b is updated incrementing it by one (line 13),
thus losing the first element of the block, u, which becomes
the last element of the previous block.

The complexity of the main algorithm is O(m).
The initialization of d, b, D, and p in [6] is done using

a somewhat complicated procedure in order to keep the ini-
tialization in O(n). A much simpler way is the procedure

index d b D p
1 3 0 5 7
2 4 1 6 10
3 7 7 7 16
4 4 10 8 11
5 2 13 10 1
6 2 15 15 2
7 2 16 1 3
8 2 9 4
9 3 13 8

10 2 2 5
11 5 4 13
12 6 14 15
13 3 11 9
14 4 16 12
15 2 12 6
16 5 3 14

Table 2: Arrays d, b, D, and p in the BZ algorithm for the
graph in Fig. 4 .

Algorithm 4 k-core computation using a flat array D

1: function k-cores(Graph G)
2: initialize(d,b,D,p, G)
3: for all i 1 to n do
4: v D[i]
5: for all u 2 NG(v) do
6: if d[u] > d[v] then
7: du d[u], pu p[u]
8: pw b[du], w D[pw]
9: if u 6= w then
10: D[pu] w, D[pw] u

11: p[u] pw, p[w] pu

12: end if
13: b[du]++, d[u]��
14: end if
15: end for
16: end for
17: return d
18: end function

19
76

https://www.vldb.org/pvldb/vol9/p13-khaouid.pdf

UNSW COMP9312_23T2

Variants of K-Core
(optional)

Optional

UNSW COMP9312_23T2

k-Core on Directed Graphs
Directed graphs: citation networks, WWW, social networks (by following
relations), P2P networks, etc.

(𝑘, 𝑙)-Core on a directed graph: the maximal subgraph 𝐹 where each
vertex has at least 𝑘 out-neighbors in 𝐹 and at least 𝑙 in-neighbors in 𝐹.

Part of a directed graph: : (2,2)-core

78

Giatsidis, Christos, Dimitrios M. Thilikos, and Michalis Vazirgiannis. "D-cores: measuring collaboration of
directed graphs based on degeneracy." Knowledge and information systems 35.2 (2013): 311-343.

Optional

UNSW COMP9312_23T2

K-Core on Weighted Graphs
Weighted graphs: air transportation networks, co-author
networks, social networks (with tie strength), etc.

The weighted degree of a vertex 𝑖,

 	𝑑# 𝑖 = ∑$∈& ' 𝑤'$

The 𝑘-core: 𝑑# 𝑖 	≥ 𝑘 for every vertex 𝑖 inside.

Edge weight of 𝑖, 𝑗

Neighbor set of i

Eidsaa, Marius, and Eivind Almaas. "S-core network decomposition: A generalization of k-core analysis to
weighted networks." Physical Review E 88.6 (2013): 062819.
Garas, Antonios, Frank Schweitzer, and Shlomo Havlin. "A k-shell decomposition method for weighted
networks." New Journal of Physics 14.8 (2012): 083030.

79

Optional

UNSW COMP9312_23T2

K-Core on Bipartite Graphs

Bipartite graphs: the vertices are divided into two disjoint sets 𝑈 and 𝐿 such that
every edge connects a vertex in 𝑈 to one in 𝐿.

The (𝛼, 𝛽)-core of 𝐺 consists of two node sets 𝑈′ ⊆ 𝑈 and 𝐿′ ⊆ 𝐿 s.t. the subgraph 𝑆 induced by 𝑈′ ∪ 𝐿′	
is the maximal subgraph of 𝐺 in which all the nodes in 𝑈′ have degree at least 𝛼 in 𝑆	and all the nodes
in	𝐿′ have degree at least 𝛽 in 𝑆.
Liu, Boge, et al. “Efficient (a,b)-core Computation an Index-based Approach”. WWW, 2019.

80

Optional

UNSW COMP9312_23T2

Online computation of (α, β)-core

Danhao Ding, Hui Li, Zhipeng Huang, and Nikos Mamoulis.2017. Efficient fault-tolerant group recommendation using alpha-
beta-core. In Proceedings of the 2017 ACM on Conference on Information and Knowledge Management.2047–2050.

𝑢! 𝑢" 𝑢#𝑢$ 𝑢% 𝑢&

v! 𝑣" 𝑣#𝑣$ 𝑣% 𝑣& 𝑣'

Example of computing (2,3)-core

The algorithm filters out the upper/lower vertices whose degrees are less
than alpha/beta (i.e., iteratively remove vertices without enough degrees).

81

Optional

UNSW COMP9312_23T2

Danhao Ding, Hui Li, Zhipeng Huang, and Nikos Mamoulis.2017. Efficient fault-tolerant group recommendation using alpha-
beta-core. In Proceedings of the 2017 ACM on Conference on Information and Knowledge Management.2047–2050.

𝑢! 𝑢" 𝑢#𝑢$ 𝑢% 𝑢&

v! 𝑣" 𝑣#𝑣$ 𝑣% 𝑣& 𝑣'

Example of computing (2,3)-core

Remove u3 and its incident edges, which are colored red.

Online computation of (α, β)-core

82

Optional

UNSW COMP9312_23T2

Danhao Ding, Hui Li, Zhipeng Huang, and Nikos Mamoulis.2017. Efficient fault-tolerant group recommendation using
alpha-beta-core. In Proceedings of the 2017 ACM on Conference on Information and Knowledge Management.2047–2050.

𝑢! 𝑢" 𝑢#𝑢% 𝑢&

v! 𝑣" 𝑣#𝑣$ 𝑣% 𝑣& 𝑣'

Example of computing (2,3)-core

Remove v1, v2, v6, v7 and their incident
edges, which are colored red.

Online computation of (α, β)-core

83

Optional

UNSW COMP9312_23T2

Danhao Ding, Hui Li, Zhipeng Huang, and Nikos Mamoulis.2017. Efficient fault-tolerant group recommendation using
alpha-beta-core. In Proceedings of the 2017 ACM on Conference on Information and Knowledge Management.2047–2050.

𝑢! 𝑢" 𝑢#𝑢% 𝑢&

𝑣#𝑣$ 𝑣%

Example of computing (2,3)-core

Remove u5, u6 and their incident edges,
which are colored red.

Online computation of (α, β)-core

84

Optional

UNSW COMP9312_23T2

Danhao Ding, Hui Li, Zhipeng Huang, and Nikos Mamoulis.2017. Efficient fault-tolerant group recommendation using
alpha-beta-core. In Proceedings of the 2017 ACM on Conference on Information and Knowledge Management.2047–2050.

𝑢! 𝑢" 𝑢%

𝑣#𝑣$ 𝑣%

Example of computing (2,3)-core

Remove v5 and their incident edges, which are colored red.

Online computation of (α, β)-core

85

Optional

UNSW COMP9312_23T2

Danhao Ding, Hui Li, Zhipeng Huang, and Nikos Mamoulis.2017. Efficient fault-tolerant group recommendation using
alpha-beta-core. In Proceedings of the 2017 ACM on Conference on Information and Knowledge Management.2047–2050.

𝑢! 𝑢" 𝑢%

𝑣$ 𝑣%

Example of computing (2,3)-core

Return the subgraph when all vertices
satisfy the degree constraints.

Online computation of (α, β)-core

86

UNSW COMP9312_23T2

Other Models

UNSW COMP9312_23T2

Why not k-core?

88

UNSW COMP9312_23T2

K-Truss

J. Cohen. Trusses: Cohesive subgraphs for social network analysis. National Security
Agency Technical Report, page 16, 2008.

• The strength of a tie can be estimated by the number of triangles containing it.

A maximal subgraph where each edge is contained in at
least k-2 triangles in the subgraph, i.e., each edge has a
support of at least k-2 in the subgraph.

M. Wang, C. Wang, J. X. Yu, and J. Zhang, Community detection in social networks: An in-depth
benchmarking study with a procedure-oriented framework. PVLDB, 8(10):998–1009, 2015.

• High quality on some community metrics.
• High accuracy on approximating some ground-truth communities.
• The most efficient one among all the evaluated algorithms.

89

UNSW COMP9312_23T2

Properties of k-Truss

k = 4 k = 3

k = 2

Each k-truss of G is a subgraph of a (𝒌 − 𝟏)-
core of G.
Proof scratch:

- Each edge is contained in at least k-2 triangle.

- To ensure this, each vertex should have at least k-1
neighbors, i.e., for a vertex u, if the edge (u, v) is
contained in k-2 triangles, there should be at least k-
2 common neighbors of u and v.

A maximal subgraph where each edge is contained in at least k-2 triangles in the
subgraph.

Cohen, Jonathan. "Trusses: Cohesive subgraphs for social network analysis." National Security Agency
Technical Report16 (2008): 3-1.

90

UNSW COMP9312_23T2

K-Truss Computation
1. Compute the (k-1)-core.
2. Compute the support of each edge.
3. Recursively delete each edge with support of less than k-2.
4. Delete the isolated vertices.

𝑣6

𝑣7

𝑣8

𝑣9

𝑣:

𝑣;

𝑣<

𝑣=

𝑣>

𝑣6?

𝑣66

𝑣67

𝒌 = 4

91

UNSW COMP9312_23T2

K-Truss Computation
1. Compute the (k-1)-core.
2. Compute the support of each edge.
3. Recursively delete each edge with support of less than k-2.
4. Delete the isolated vertices.

𝑣6

𝑣7

𝑣8

𝑣9

𝑣:

𝑣;

𝑣<

𝑣=

𝑣>

𝑣6?

𝑣66

𝑣67

𝒌 = 4

92

UNSW COMP9312_23T2

K-Truss Computation
1. Compute the (k-1)-core.
2. Compute the support of each edge.
3. Recursively delete each edge with support of less than k-2.
4. Delete the isolated vertices.

𝑣6

2
1

22
2

1
2 2

2 2

2

2

𝑣7

𝑣8

𝑣9

𝑣:

𝑣;

𝑣<

𝑣=

𝑣>

𝑣6?

𝑣66

𝑣67

𝒌 = 4

3

3
2

2

3

3

3

2

2

93

UNSW COMP9312_23T2

1. Compute the (k-1)-core.
2. Compute the support of each edge.
3. Recursively delete each edge with support of less than k-2.
4. Delete the isolated vertices.

𝑣6

2
1

22
2

1
2 2

2 2

2

2

𝑣7

𝑣8

𝑣9

𝑣:

𝑣;

𝑣<

𝑣=

𝑣>

𝑣6?

𝑣66

𝑣67

𝒌 = 4

3

3
2

2

3

3

3

2

2

K-Truss Computation

94

UNSW COMP9312_23T2

1. Compute the (k-1)-core.
2. Compute the support of each edge.
3. Recursively delete each edge with support of less than k-2.
4. Delete the isolated vertices.

𝑣6

2 21
1

2 2

2 2

1

1

𝑣7

𝑣8

𝑣9

𝑣:

𝑣;

𝑣<

𝑣=

𝑣>

𝑣6?

𝑣66

𝑣67

𝒌 = 4

3

3
2

2

3

3

3

2

2

K-Truss Computation

95

UNSW COMP9312_23T2

1. Compute the (k-1)-core.
2. Compute the support of each edge.
3. Recursively delete each edge with support of less than k-2.
4. Delete the isolated vertices.

𝑣6

1 1

1 1

0 2

𝑣7

𝑣8

𝑣9

𝑣:

𝑣;

𝑣<

𝑣=

𝑣>

𝑣6?

𝑣66

𝑣67

𝒌 = 4

2

2
2

2

3

3

3

2

2

K-Truss Computation

96

UNSW COMP9312_23T2

1. Compute the (k-1)-core.
2. Compute the support of each edge.
3. Recursively delete each edge with support of less than k-2.
4. Delete the isolated vertices.

𝑣6 0

𝑣7

𝑣8

𝑣9

𝑣:

𝑣;

𝑣<

𝑣=

𝑣>

𝑣6?

𝑣66

𝑣67

𝒌 = 𝟒

2

2
2

2

3

3

3

2

2

K-Truss Computation

97

UNSW COMP9312_23T2

1. Compute the (k-1)-core.
2. Compute the support of each edge.
3. Recursively delete each edge with support of less than k-2.
4. Delete the isolated vertices.

𝑣6

𝑣7

𝑣8

𝑣9

𝑣:

𝑣;

𝑣<

𝑣=

𝑣>

𝑣6?

𝑣66

𝑣67

𝒌 = 𝟒

2

2
2

2

3

3

3

2

2

K-Truss Computation

98

UNSW COMP9312_23T2

1. Compute the (k+1)-core.
2. Compute the support of each edge.
3. Recursively delete each edge with support of less than k-2.
4. Delete the isolated vertices.

𝑣6

𝑣7

𝑣8

𝑣9

𝑣:

𝑣;

𝑣<

𝑣=

𝑣>

𝑣6?

𝑣66

𝑣67

𝒌 = 𝟒

2

2
2

2

3

3

3

2

2

4-truss

K-Truss Computation

99

UNSW COMP9312_23T2

K-Edge Connected Component

A graph is 𝒌-edge connected if it is still connected after removing
any set of 𝑘 − 1 edges from it.

A 𝒌-Edge Connected Component (𝒌-𝑬𝑪𝑪) is a maximal 𝑘-edge
connected subgraph

in S has such property regarding each other. As pointed out earlier,
due to the high order time complexity and the nature of the frame-
work (cut-based), the techniques and the framework in [20] are not
scalable enough to efficiently process large scale graphs.

The problem of efficiently computing every maximal subset Vi

of vertices of G, such that each pair of vertices in Vi is k-edge con-
nected in G, has been studied in [8, 12, 10, 15]. Note that in such a
maximal vertex subset Vi of G, each pair of vertices that are k-edge
connected in G is not necessarily k-edge connected in the induced
subgraph by Vi; in fact, the induced subgraph may be disconnected.
Therefore, computing all such maximal vertex subsets is inherently
different from computing the k-edge connected components of G.
Note that, although [10] also uses the term “k-edge connected com-
ponent”, the meaning is different as discussed above.

2. BACKGROUND INFORMATION
In this paper, we focus on an undirected graph G = (V, E), where

V is the set of vertices and E is the set of edges. We denote the num-
ber of vertices and the number of edges by |V | and |E|, respectively.

Given a vertex subset Vs ⊆ V , the induced subgraph G[Vs] by
the vertices in Vs is a subgraph of G with Vs as its vertex set such
that the edge set of G[Vs] consists of only the edges in G with both
endpoints in Vs. That is, G[Vs] = (Vs, {(u, v) ∈ E | u, v ∈ Vs}).

2.1 Problem Statement

Definition 2.1: A graph G is k-edge connected if the remaining
graph is still connected after the removal of any (k − 1) edges from
G. !

For example, the graph G in Fig. 3 is 2-edge connected, while
the two subgraphs G1 and G3 in Fig. 3 are 3-edge connected.

G2

G1

v1
v2 v4

v5v3

v10 v11

v13

v6
v8v7

v9

G3

v12

Figure 3: A graph and its 3-edge connected components

Definition 2.2: Given a graph G, a subgraph g of G is a k-edge
connected component if 1) g is k-edge connected, and 2) any super-
graph of g in G is not k-edge connected. !

Problem Statement: Given a graph G and an integer k, we study
the problem of efficiently computing k-edge connected components
of G.

Properties of k-edge connected components:

• A k-edge connected component is an induced subgraph;

• A k-edge connected component is maximal; that is, by adding
any vertex or a set of vertices into a k-edge connected com-
ponent, the resulting induced subgraph will not be k-edge
connected;

• All k-edge connected components of a graph are disjoint.

2.2 Cut-based Framework, Global Min-Cut,
and Connectivity Test

Definition 2.3: Given a graph G = (V, E), a cut C = (S ,T) is a
partition of V into two non-empty, disjoint subsets, S ∪ T = V and
S ∩ T = ∅. !

We also denote a cut by the set of edges whose endpoints are in
different subsets, i.e., {(u, v) ∈ E | u ∈ S , v ∈ T }. The value of a cut
is the number of edges in the cut, i.e., w(C) = w(S ,T) = |{(u, v) ∈
E | u ∈ S , v ∈ T }|.

Definition 2.4: A cut C = (S ,T) is called an s–t cut if s and t are
in different partitions, and it is a minimum s–t cut if its value is no
larger than the value of any other s–t cuts. !

Let λ(s, t; G) denote the value of a minimum s–t cut in G. The
connectivity between s and t in G is defined as λ(s, t; G). Two
vertices s and t are called k-edge connected in G if and only if
λ(s, t; G) ≥ k. In the following, we simply denote k-edge connected
as k-connected.

Definition 2.5: The global min-cut of a graph G is the cut of G that
has the smallest value among all cuts of G. !

Let λ(G) denote the value of the global min-cut of G, or equiv-
alently, λ(G) = mins,t∈G,s!t λ(s, t; G). A graph G is k-connected if
and only if λ(G) ≥ k. For example, C1 = {(v4, v7), (v5, v7), (v5, v12)}
and C2 = {(v5, v12), (v9, v11)} are cuts of the graph in Fig. 3. C1 is a
minimum v1–v8 cut and C2 is a global min-cut.

Cut-based framework: For computing k-edge connected com-
ponents of a graph G, an existing solution [20] uses a cut-based
framework by iteratively computing a small cut of each connected
subgraph by running a variant of the global min-cut algorithm, and
removing all edges in cuts with values less than k. The connected
subgraphs in the final graph are k-edge connected components of
G. The pseudocode is shown below.

1: Procedure: find k-edge connected components (G, k)
2: Find a small cut, C, of G;
3: if the value of C is less than k then
4: Remove all edges of C from G;
5: Find k-edge connected components of each connected subgraph of

G;
6: else
7: Output G as a k-edge connected component;

Computing a global min-cut: We introduce an approach to find-
ing global min-cut of graphs [14]. The general idea is finding min-
imum s–t cuts for (|V | − 1) pairs of vertices, and reporting the one
with the smallest value as a global min-cut. Instead of computing
maximum flows, the authors in [14] propose a procedure called the
maximum adjacency search or maximum cardinality search, de-
noted by Mas, to find a minimum s–t cut. Given a graph as input,
Mas returns the minimum cut for a pair of vertices s and t. The effi-
ciency of this approach is due to the fact that s and t are determined
by Mas rather than its input. Whenever a minimum s–t cut is found
by Mas, s and t are merged into a super-vertex, and the resulting
graph is given as an input to Mas for another iteration. The global
min-cut is found after (n − 1) iterations.

The procedure Mas computes an order of all vertices in G, de-
noted by a list L. Let t be the last vertex in L and s be the vertex
prior to t in L. Then it has the property that the adjacent edges of t in
G is the minimum s–t cut. The list L is constructed as follows. It is
initialized as a singleton list containing an arbitrary vertex from V .
As long as there are vertices not included in L, the vertex u, which is
the one most tightly connected to L, i.e., u = arg maxv∈V\L w(L, v),
where w(L, v) denotes the number of edges between v and the ver-
tices in L, is added to the tail of L.

Theorem 2.1: [14] Let s and t be the two vertices (in the order)
most recently added to L, then (L\{t}, {t}) is a minimum s–t cut.
The time complexity of Mas is O(|E| + |V | log |V |) if the Fibonacci
heap is used for finding the most tightly connected vertex. !

3-𝐸𝐶𝐶s

108

UNSW COMP9312_23T2

K-Vertex Connected Component

Enumerating k-Vertex Connected Components in Large
Graphs

Dong Wen\, Lu Qin\, Xuemin Lin‡, Ying Zhang\, and Lijun Chang‡

\CAI, University of Technology, Sydney, Australia
‡The University of New South Wales, Australia

\dong.wen@student.uts.edu.au; {lu.qin, ying.zhang}@uts.edu.au;
‡{lxue, ljchang}@cse.unsw.edu.au;

ABSTRACT
Cohesive subgraph detection is an important graph problem that is
widely applied in many application domains, such as social com-
munity detection, network visualization, and network topology anal-
ysis. Most of existing cohesive subgraph metrics can guarantee
good structural properties but may cause the free-rider effect. Here,
by free-rider effect, we mean that some irrelevant subgraphs are
combined as one subgraph if they only share a small number of ver-
tices and edges. In this paper, we study k-vertex connected compo-
nent (k-VCC) which can effectively eliminate the free-rider effect
but less studied in the literature. A k-VCC is a connected sub-
graph in which the removal of any k � 1 vertices will not discon-
nect the subgraph. In addition to eliminating the free-rider effect,
k-VCC also has other advantages such as bounded diameter, high
cohesiveness, bounded graph overlapping, and bounded subgraph
number. We propose a polynomial time algorithm to enumerate all
k-VCCs of a graph by recursively partitioning the graph into over-
lapped subgraphs. We find that the key to improving the algorithm
is reducing the number of local connectivity testings. Therefore,
we propose two effective optimization strategies, namely neighbor
sweep and group sweep, to largely reduce the number of local con-
nectivity testings. We conduct extensive performance studies using
seven large real datasets to demonstrate the effectiveness of this
model as well as the efficiency of our proposed algorithms.

1. INTRODUCTION
Graphs have been widely used to represent the relationships of

entities in the real world. With the proliferation of graph appli-
cations, research efforts have been devoted to many fundamental
problems in mining and analyzing graph data. Recently, cohesive
subgraph detection has drawn intense research interest [22]. Such
problem can be widely adopted in many real-world applications,
such as community detection [10, 16], network clustering [26],
graph visualization [1, 35], protein-protein network analysis [2],
and system analysis [34].

In the literature, a large number of cohesive subgraph models
have been proposed. Among them, a clique, in which every pair
of vertices are connected, guarantees perfect familiarity and reach-
ability among vertices. Since the definition of the clique is too

c

b

4-Core: {G1∪G2∪G3∪G4} 4-ECC: {G1∪G2∪G3, G4} 4-VCC: {G1, G2, G3, G4}

G3

a

G2G1

G4

Figure 1: Cohesive subgraphs in graph G.

strict, clique-relaxation models are proposed in the literature in-
cluding s-clique [19], s-club [19], �-quasi-clique [33] and k-plex
[4, 23]. Nevertheless, these models require exponential computa-
tion time and may lack guaranteed cohesiveness. To conquer this
problem, other models are proposed such as k-core [3], k-truss [9,
27, 24], k-mutual-friend subgraph [36] and k-ECC (k-edge con-
nected component) [37, 6], which require polynomial computation
time and guarantee decent cohesiveness. For example, a k-core
guarantees that every vertex has a degree at least k in the subgraph,
and a k-ECC guarantees that the subgraph cannot be disconnected
after removing any k � 1 edges.

Motivation. Despite the good structural guarantees in existing co-
hesive subgraph models, we find that most of these models cannot
effectively eliminate the free-rider effect. Here, by free-rider effect,
we mean that some irrelevant subgraphs are combined as one result
subgraph if they only share a small number of vertices and edges.
To illustrate the free rider effect, we consider a graph G shown in
Fig. 1, which includes four subgraphs G1, G2, G3, and G4. The
four subgraphs are loosely connected because: G1 and G2 share a
single edge (a, b); G2 and G3 share a single vertex c; and G3 and
G4 do not share any edge or vertex. Let k = 4. Based on the k-
core model, there is only one k-core, which is the union of the four
subgraphs G1, G2, G3, and G4, along with the two edges connect-
ing G3 and G4. Based on the k-ECC model, there are two k-ECCs,
which are G4 and the union of three subgraphs G1, G3, and G3.
Motivated by this, we aim to detect cohesive subgraphs and effec-
tively eliminate the free-rider effect, i.e., to accurately detect G1,
G2, G3 and G4 as result cohesive subgraphs in Fig. 1.

In the literature, a recent work [31] aims to eliminate the free-
rider effect in local community search. Given a query vertex, the
algorithm in [31] tries to eliminate the free-rider effect by weight-
ing each vertex in the graph by its proximity to the query vertex.
Based on the vertex weights, a query-biased subgraph is returned
by considering both the density and the proximity to the query ver-

ar
X

iv
:1

70
3.

08
66

8v
1

 [c
s.D

B
]

25
 M

ar
 2

01
7

A graph is 𝒌-vertex connected if it is still connected after
removing any set of 𝑘 − 1 vertices from it.

A 𝒌-Vertex Connected Component (𝒌-𝑽𝑪𝑪) is a maximal 𝑘-vertex
connected subgraph.

109

UNSW COMP9312_23T2

Cliques
Every pair of vertices pair is connected
A clique is called maximal clique if there exist no other bigger cliques that contain it
Also called complete graph

R. D. Luce and A. D. Perry, “A method of matrix analysis of group structure,” Psychometrika, vol. 14,
no. 2, pp. 95–116, 1949

110

UNSW COMP9312_23T2

Variations of cliques: quasi-clique

Quasi-clique: relax on density or degree.

 total # of edges:
|E|(E F6)

7
to	

𝛾 |E|(E F6)
7

H. Matsuda, T. Ishihara, A. Hashimoto. Classifying molecular sequences using a linkage graph with
their pairwise similarities. Theor. Comput. Sci., 1999

𝛾 = 0.8

111

UNSW COMP9312_23T2

Cohesive Subgraph Models
Global cohesiveness: cliques and variants

Node and edge constraints: k-core, k-truss

Connectivity: k-ECC, k-VCC

112

UNSW COMP9312_23T2

Comparison of models

Core-based-models Truss-based-models Clique-based-models

Cohesive level

Computation complexity

Danhao Ding, Hui Li, Zhipeng Huang, and Nikos Mamoulis.2017. Efficient fault-tolerant group recommendation using alpha-beta-core.
In Proceedings of the 2017 ACM on Conference on Information and Knowledge Management.2047–2050.
Z.Zou, “Bitruss decomposition of bipartite graphs,” in DASFAA. Springer, 2016, pp. 218–233.
Yun Zhang, Charles A Phillips, Gary L Rogers, Erich J Baker, Elissa J Chesler, and Michael A Langston. 2014. On finding bicliques in
bipartite graphs:a novel algorithm and its application to the integration of diverse biological data types. BMC bioinformatics
15,1(2014),110.

113

UNSW COMP9312_23T2

Learning Outcome

- Know the definition of the introduced cohesive subgraph models

 - Understand the algorithms to compute k-core and the process
to compute k-truss

114

