Time Complexity: Recap

= Correct
= amortized/average/expected vs worst case

= Simplified
= |fa>=b, O(a+b)->0(a)

= Tight

" time complexity to scan neighbors of a node u (adjacency list): O(deg(u))

1 UNSW COMP9312_23T2

Assighment 1 Review

O(m)

Q5:
First-In-First-Out

2 UNSW COMP9312_23T2

2-Hop Recap: Reachability
O(|Lyy:(u)| + |L;,(v)]) : Precomputed order + merge join

Query Time Complexity: L is the average number of labels of a node
O(L)

Index Space:
O(n*L)

3 UNSW COMP9312_23T2

2-Hop Recap: Reachability

For each node u in the graph from high-degree to low-degree: O(n*m+n2*L)
* add uinto both L, (u) and L, (u);
e conduct BFS from u and for each reached node w:
- if (u,w) has been covered or : stop exploring out-neighbors of w;
- else: add u into L, (w);
* conduct reverse BFS from u and for each reached node w’:
- if (w,u) has been covered or : stop exploring in-neighbors of w’;

- else:add uinto L, (w’);

4 UNSW COMP9312_23T2

2-Hop Recap: Reachability

1st round: processj 2nd round: process ¢

Lowt(a) = (i) Loutl) = (i,0);
Loutlb) = (i); Loutlb) = (3,0);
Loutl€) = (i) Loudl€) = (10);
Loutli) = (1) Loutli) = (i)
pruned Loutli) = (i) Loutli) = (i)

-——
- = -~ -

Lin(4) = (i); Lin(c) = (c);

7/ N Q
@*@—’QK@*@—’@) Lol =) L) = ()
. Lin(g) = (7); Linfe) = (c);
<\ Cj’ Linh) = (j); Linlf) = (c);
EAN O Linll) = (7); Linli) = (c);
> .o Lin(j) = (j);
Linlk) = (j);
0 Linlg) = (1);
Linlh) = (j);
Linl1) = (3);

5 UNSW COMP9312_23T2

Structural Diversity

Required knowledge from Topics 0—3

Feel free to discuss the question with your tutors ...

6 UNSW COMP9312_23T2

Cohesive Subgraphs
Detection

COMP9312_23T2

Clutline

- Basic Concepts
- Applications

- Models and Algorithms

Community structure in graphs

Community structure: a cohesive group of nodes that are connected
"more densely" to each other than to the nodes in other communities

- Within-group (intra-group) edges.
High density

- Between-group (inter-group) edges.
Low density

Community structures are quite common in real networks.

9 UNSW COMP9312_23T2

Finding Communities

Information Retrieval

Who tend to work together

hongyuan_zha

Co-author network

c._lee giles
r._manmatha

robert lxr'-:»','et:///qvictor' lavrenko

*clonalcl metzler

. ‘Qioc‘n_hc-_lee 2

.\ross wilkinson justin_zobel andrew_turpin

@diane_kelly james_allan
@wei xu \\ %jinx:i Xu w._bruce_croft gerard_salton
\. mark_sanderson norbert_fuhr

yi_zhangi@micholas_j._belkinhoward _r._turtleg _*". clement_t._yu
~ \ }/’/,.almt_sw nahal
4T lewi “@¥chris buckley
avid_d._lewis 1 ec
o ellen m. voothee_,__.
shlomo_argamon

ames_p._callan =
\ M frieder
lan_soboroff

susan_t. dumais
abdur_chowdhury
harles |, a. clarke | —=#david_a._grossman

alistair_moffat

@christine_l._borgman

chengxiang_zhai
/¢uo si
david a. evans
/

jamie callan

donna_harman

—

david_hawking

B) @steven m. beitzel,
jimmy J._lin . @eric_c._jensen

/*fablo crestani ¥ - R stephen_e._robertson . .
ryen w. -.-;hib.t. j._van_rijsbergen ’ S
/j‘_)/bian ruthven -

Glel ogonard ilie Machine learning

eric_brill

Q.Mei, D.Cai, D.Zhang, and C.Zhai, Topic Modeling with Hitting Time, WWW 2008

10 UNSW COMP9312_23T2

Finding Communities (Facebook or Twitter)

CS department fri | family members
college friends\ N/
‘,A‘ﬁ’
s

y

highschool friends
McAuley, Leskovec: Discovering social circles in ego networks, 2012]

How to measure group cohesion?

Qd Mutuality of ties
- everybody in the group knows everybody else (clique)

 frequency of ties among members
- everybody in the group has links to at least k others in the group (k-core)

[Others: density, quasi-clique, k-truss, k-edge connected component, etc.

12 UNSW COMP9312_23T2

Cohesive Subgraphs

In some models, a value k can be used to capture the cohesiveness of the
subgraph. For example, k-core is a maximal subgraph in which each vertex has

at least k neighbors in the subgraph.

13 UNSW COMP9312_23T2

Application Summary

« Network Modeling and Analysis

* Network Visualization

« Reasoning the Collapse of a Network
 Discovering Influential Nodes

« Community Discovery

« Anomaly Detection

* Protein Function Prediction

14 UNSW COMP9312_23T2

Application - Community Discovery

Social networks: persistent community search [ICDE 2018], spatial community search
[ICDE 2018], attributed community detection [VLDB 2017] [VLDB 2017] [VLDB 2018],

influential community search [VLDB 2015]

Paul ®)
Adam @ o%g
/ %%
e o
Taylor
@
o
Mark A
@B john
1 2km
A geo-social network
15

Communities in Gowalla

UNSW COMP9312_23T2

Application — Network Modeling and Analysis

Complex networks: pattern and anomaly analysis using k-core analysis
[ICDM 2016] [KAIS 2018]

10° 2 10°
2 4
0 y Hm
o & 10°
= 9 ®
o 0@_ sCEO of the_‘102
Q Of mmee’ cCOmMpany
/
O wm oo o H101
0 0
10 v v v 210
10° 10'_10° 10° 10

Degree

16 UNSW COMP9312_23T2

Application — Network Modeling and Analysis

Social networks: modeling engagement dynamics in social graphs [CIKM

2013] [Social Networks 1983]

0

|
—_
T

—_
o

|
N
T

|
w
T

Probability of Departure
o o

= =0 = AS:2004/12 — 2005/12 |]
= =0- = AS: 2005/12 — 2006/12 | |
- =@ - AS:2006/12 - 2007/11

10

Core Number

(a) CAIDA

15

Probability of Departure

= =0~ = Oregon: May 31 — Apr 07
x = =J= = Oregon: Apr 07 — Apr 14
N = <% - Oregon: Apr 14 — Apr 21
= = == = Oregon: Apr 21 — Apr 28
T = == = Oregon: Apr 28 — May 05
Oregon: May 05 — May 12
“ AR Oregon: May 12 — May 19
~ = =@ = Oregon: May 19 — May 26

17

10
Core Number

(b) OREGON

UNSW COMP9312_23T2

Application — Discovering Influential Nodes

The most effective spreaders are located in the core of the network,
fairly independent of their degree. Influence of the infection probability beta on the

spreading efficiency M of nodes, grouped according to their k-shell values [Nature
Physics 2010]

08 M 1<ks< 10

w10 <k< 20
|+ 20 <k<30
44 30 <k,<40
40<ks< 50
50< k<60
= 047y 60<k <70
. = Average

0.6

0.2r

18 UNSW COMP9312_23T2

Application - Reasoning the Evolvement of a Social Network

Friendster network: revealing the mechanism of collapse [SNAM 2017] [COSN 2013]

Number of nodes in each core

4000000 2000000 0
5-core —
10-core BN B 15
All nodes 15-core [L DN |
[T D 25
T
BT BN 35
BT Bl BE
[e . R B 45
e EE D 3
[T BN EBEEY 55 ©
[e . EE B <
[T B BE | 65
[EEE e Q
: | T . S W 75
Y [N
: R EEE BEm| 35
We draw the cross-section m———— ——
T BN N 05
[N e
EETTE. BT CEE 105
[. EEE N
T N EE 115
i

19 UNSW COMP9312_23T2

Application - Fraud Detection

} Fake buyers
‘ W % i Products to
promote

User-item networks:

Challenges:
. Billions of buyers and productions, 10+ billions of transactions
. Dynamic data

Solution: Efficient biclique detection on bipartite graph
Outcome: Significantly increase the recall by 40% in double 11 festival in 2017

Lyu B, Qin L, Lin X, et al. Maximum Biclique Search at Billion Scale[J]. Proc. VLDB Endow., 2020, 13(9):
1359-1372. [Best paper runner-up award in VLDB 2020]

20 UNSW COMP9312_23T2

Application -Group Recommendation

Customer-movie network:

Se7en The Godfather Leon Star Wars Avengers The Matrix WALL-E =~ X-Man

Crime Sci-Fi1

Liu B, Yuan L, Lin X, et al. Efficient (a, B)-core computation: An index-based approach[C], CIKM. 2019: 1130-1141.

Ding D, Li H, Huang Z, et al. Efficient fault-tolerant group recommendation using alpha-beta-core[C] CIKM

21 UNSW COMP9312_23T2

Application - Team Formation

Author-paper networks: analyzing the relationships between groups of
collaborators in the same institution

\.
~

+G.JSilva

Y 7hao ,+ A. Danw ,+ J. Wolf‘
' | (t+D.Corn.| |+D.Dias| Rdl*ALY
+H. Andr.

+Ling Liu —[+M.ChenHHB.Gedik]—m

Sarlyiice A E, Pinar A. Peeling bipartite networks for dense subgraph discovery[C]//Proceedings of the

Eleventh ACM International Conference on Web Search and Data Mining. 2018: 504-512.

22

UNSW COMP9312_23T2

More Applications

Graph clustering

Giatsidis, Christos, et al. "Corecluster: A degeneracy based graph clustering
framework." AAAI. 2014.

Graph similarity
Nikolentzos, Giannis, et al. "A Degeneracy Framework for Graph Similarity." IJCAI. 2018.
Community evaluation

Giatsidis, Christos, Dimitrios M. Thilikos, and Michalis Vazirgiannis. "Evaluating
cooperation in communities with the k-core structure." ASONAM, 2011.

Influence maximization

Elsharkawy, Sarah, et al. "Effectiveness of the k-core nodes as seeds for influence
maximisation in dynamic cascades." International Journal of Computers 2 (2017).

Graph generating

Baur, Michael, et al. "Generating graphs with predefined k-core structure." Proceedings of
the European Conference of Complex Systems. 2007.

23 UNSW COMP9312_23T2

Degree-based Models:
K-Core and its Variants

K-Core

K-core is a maximal connected subgraph in which each vertex
has at least k neighbors in thesubgraph.

Erdds, Paul, and Andras Hajnal. "On chromatic number of graphs and set-systems." Acta
Mathematica Hungarica 17.1-2 (1966): 61-99.

25 UNSW COMP9312_23T2

K-Core

Maximal subgraph is the once that cannot include more vertices.
Maximum subgraph is the one with the most vertices.

26 UNSW COMP9312_23T2

Graph Degeneracy (k,,q)

The largest k such that the k-core is not empty, which is also
called the degeneracy.

27 UNSW COMP9312_23T2

Computing k-Core

Iteratively remove every vertex whose degree is less than k.
O(m + n)

Algorithm : ComputeCore(G, k)

Input : G :agraph, k : degree constraint
Output : Cx(G)
1 while exists v € G with deg(v, G) < k do
2 | G+ G\{vUE(v,G)};

3 return G

28 UNSW COMP9312_23T2

Computing k-Core

Iteratively remove every vertex whose degree is less than k.
O(m + n)

Algorithm : ComputeCore(G, k)

Input : G :agraph, k : degree constraint
Output : Cx(G)
1 while exists v € G with deg(v, G) < k do
2 | G+ G\{vUE(v,G)};

3 return G

29 UNSW COMP9312_23T2

Computing k-Core

Iteratively remove every vertex whose degree is less than k.
O(m + n)

Algorithm : ComputeCore(G, k) P P
Input : G :agraph, k : degree constraint /) 3-core | \\
Output : Cr(G) l \ |

1 while exists v € G with deg(v, G) < k do),/ ¥

2 | G+ G\{vUE(v,G)}; ~——7 -

3 return G

30 UNSW COMP9312_23T2

Computing k-Core

Iteratively remove every vertex whose degree is less than k.
O(m + n)

Algorithm : ComputeCore(G, k) e~ ==
Input : G :agraph, k : degree constraint / 3-core ’ \\
Output : Cr(G) (l \ |

1 while exists v € G with deg(v, G) < k do L)/ N/

2 | G+ G\{vUE(@G)k R o

3 return (G

31 UNSW COMP9312_23T2

Example: Online k-core computation

Iteratively remove every vertex whose degree is less than k.

This table lists the status of the vertices:

Delete F F F F F F F F F F F F F

Find 3-core in this graph:

32 UNSW COMP9312_23T2

Example: Online k-core computation

Iteratively remove every vertex whose degree is less than k.

deg(v1)=1, deg(v9)=2, deg(v10)=1.
The degree of vertex 1,9, 10 are smaller than
3, so we need to delete them.

1 9 10

Delete T F F F F F F F T T F F F

Find 3-core in this graph:

33 UNSW COMP9312_23T2

Example: Online k-core computation

Iteratively remove every vertex whose degree is less than k.

deg(v2)=2, deg(v8)=2.
The degree of vertex 2, 8 is smaller than 3, so
we need to delete them.

Delete T T F F F F F T T T F F F

Find 3-core in this graph:

34 UNSW COMP9312_23T2

Example: Online k-core computation

Iteratively remove every vertex whose degree is less than k.

deg(v3)=2.
The degree of vertex 3 is smaller than 3, so we
need to delete it.

3

Delete T T T F F F F T T T F F F

Find 3-core in this graph:

35 UNSW COMP9312_23T2

Example: Online k-core computation

Iteratively remove every vertex whose degree is less than k.

The degree of all vertices is greater than 3, so
the iteration is end. Then we get the result of
3-core.

Delete T T T F F F F T T T F F F

Find 3-core in this graph:

36 UNSW COMP9312_23T2

Core Number

k(v) = the largest k such that the k-core contains v

Core number of a vertex v:

37 UNSW COMP9312_23T2

Core Decomposition

Compute the core number of every vertex.

Note: If we store the core number of every vertex offline, given a graph G and a parameter Kk,
all the vertices in the k-core (denoted as C,(V, E)) of G can be returned in O(|V(C,)I|) time.

Tips: Store the vertices in decreasing order of their core numbers.

38 UNSW COMP9312_23T2

Core Decomposition (Cont.)

How to identify different groups?
There are two 3-cores in the example graph.

39 UNSW COMP9312_23T2

Core Decomposition: Methods

Global-view: peel low-degree vertices iteratively from the whole
graph (which we introduce here).

Local-view: update the upper bound of core number for each
vertex until converge.

40 UNSW COMP9312_23T2

Core Decomposition: Global-view (Peeling)

— — — —
—_— — —

For each unvisited vertex u with the lowest) - T~
degree in G !

assign core(u) as degree(u);
mark u as visited;

decrease the degree of its

unvisited neighbors with higher
degree than u by 1;

41 UNSW COMP9312_23T2

Core Decomposition: Global-view (Peeling)

— — — —
Y —

For each unvisited vertex u with the lowest . 1// ~ <
degree in G

assign core(u) as degree(u);
mark u as visited;

decrease the degree of its
unvisited neighbors with higher
degree than u by 1;

42 UNSW COMP9312_23T2

Core Decomposition: Global-view (Peeling)

T — —
— _—

For each unvisited vertex u with the lowest ,_;~ >~

— — —
- — —
—
~—

degree in G
assign core(u) as degree(u);
mark u as visited;

decrease the degree of its

unvisited neighbors with higher
degree than u by 1;

43 UNSW COMP9312_23T2

Core Decomposition: Global-view (Peeling)

. — — — —
e —
—~—
— ~

For each unvisited vertex u with the lowest N ~<
degree in G

assign core(u) as degree(u);
mark u as visited;

decrease the degree of its

unvisited neighbors with higher
degree than u by 1;

44 UNSW COMP9312_23T2

Core Decomposition: Global-view (Peeling)

—_——— ——
— — —
—

For each unvisited vertex u with the lowest ,_ ;" ~<

e — —— —

degree in G
assign core(u) as degree(u);
mark u as visited;

decrease the degree of its

unvisited neighbors with higher AN S~ 2 - s
degree than u by 1; ~- T -

—~— —
T o — — —

45 UNSW COMP9312_23T2

Core Decomposition: Global-view (Peeling)

For each unvisited vertex u with the lowest
degree in G

assign core(u) as degree(u);
mark u as visited;

decrease the degree of its

unvisited neighbors with higher
degree than u by 1;

46 UNSW COMP9312_23T2

Core Decomposition: Global-view (Peeling)

— — — —
— " —

For each unvisited vertex u with the lowest _;~ g T —— _ TN
degree in G S T S~ Q@
assign core(u) as degree(u); S SN /30 TN N
. k=3" \
mark u as visited; ' | (!)

\ \ 3 3, \\3 ;!
decrease the degree of its \\ N N LT ~__2~ //
unvisited neighbors with higher NS - ,
degree than u by 1; RS bt -7

—
e e — — —

47 UNSW COMP9312_23T2

Core Decomposition: Global-view (Peeling)

For each unvisited vertex u with the lowest
degree in G

assign core(u) as degree(u); /
mark u as visited, \

decrease the degree of its
unvisited neighbors with higher
degree than u by 1;

48 UNSW COMP9312_23T2

Example: O(n?) Algorithm for Core Decomposition

vertex A B C D E F G H

Iterate over all the vertices. For a deleting vertex v, if
the degree of its unvisited neighbor u is greater than
the degree of v, then decrease the degree of u by one.

49 UNSW COMP9312_23T2

Example: O(n?) Algorithm for Core Decomposition

Start from the vertex A, A’s neighbor is B.

vertex A B C D E F G H

degree[B]>degreel[A],
then degree[B]<degree[B]-1, degree[B]=2.

vertex A B C D E F G H

S0 UNSW COMP9312_23T2

Example: O(n?) Algorithm for Core Decomposition

The next vertex is B, B's unvisited neighbors are C and D.

vertex A B C D E F G H

degree[C]>degree[B],
then degree|[C] < degree[C]-1, degree[C]=3.
degree[D]>degree[B],
then degree[D] < degree[D]-1, degree[D]=2.

vertex A B C D E F G H

51 UNSW COMP9312_23T2

Example: O(n?) Algorithm for Core Decomposition

The next vertex with the smallest degree is D,
D’s unvisited neighbors are C and G.

(B} vertex A B C D E F G H
(@ Q e degree[C]>degreel[D],
Q m then degree[C] « degree[C]-1, degree[C]=2.
G degree[G]>degree[D],
G then degree[G] « degree[G]-1, degree[G]=3.
vertex A B C D E F G H

52 UNSW COMP9312_23T2

Example: O(n?) Algorithm for Core Decomposition

The next vertex with the smallest degree is C,
C’s unvisited neighbor is E.

@ vertex A B C D E F G H
G(G Q Q degree[E]=degree[C], then nothing would be changed.
\m‘ G degree[F]>degree|[C],
G then degree[F] < degree[F]-1, degree[F]=4.
vertex A B C D E F G H

53 UNSW COMP9312_23T2

Example: O(n?) Algorithm for Core Decomposition

The next vertex with the smallest degree is E,
E's unvisited neighbor is F.

vertex A B C D E F G H

degree[F]>degreelE],
then degree[F] < degree[F]-1, degree[F]=3.

vertex A B C D E F G H

54 UNSW COMP9312_23T2

Example: O(n?) Algorithm for Core Decomposition

The next vertex with the smallest degree is G,
G’s unvisited neighbors are F, H and |.

@ vertex A B C D E F G H

@ Q‘Q degree[H]=degree[G], degree|l]=degree[G], degree[F]=degree[G], then
G(m" nothing would be changed.

vertex A B C D E F G H

S5 UNSW COMP9312_23T2

Example: O(n?) Algorithm for Core Decomposition

The next vertex with the smallest degree is F,
F's unvisited neighbors are H and |.

vertex A B C D E F G H

degree[H]=degree[F], degree[l]=degree[F],
then nothing would be changed.

vertex A B C D E F G H

56 UNSW COMP9312_23T2

Example: O(n?) Algorithm for Core Decomposition

The next vertex with the smallest degree is H, H's unvisited neighbor is |I.

vertex A B C D E F G H

degreell]=degree[H], then nothing would be changed.

vertex A B C D E F G H

57 UNSW COMP9312_23T2

Example: O(n?) Algorithm for Core Decomposition

vertex A B C D E F G H

The decomposition process is complete.

58 UNSW COMP9312_23T2

Quick exercise

Could you compute the core number of each vertex?

59 UNSW COMP9312_23T2

Example: O(n?) Algorithm for Core Decomposition

The time complexity of the whole process is O(n2+m) = O(n2).

Need to get the vertex with minimum degree in each iteration:

Using heap (priority queue): O(m*log(n))
Using Fabonacci heap: O(m+n*log(n))

Any better solution?

60 UNSW COMP9312_23T2

Core Decomposition using Doubly Linked List

For each degree d, store all vertices with degree d using a doubly linked list
(DLL)

When the degree of a vertex u decreases, move u from old DLL to a new DLL.

Time complexity: O(m)
Drawback:

61 UNSW COMP9312_23T2

Core Decomposition using Flat Array

In order to achieve the time complexity of O(m), we first
sort all vertices according to their degree.

o
(B,
Q‘@

0o L

AN

Algorithm : CoreDecomposition

Input : G = (V,E) :agraph

Output : {cn(u) | u € V'}: core number of every vertex in G
d(u) < deg(u,G) for every u € V;

order the vertices in V' in increasing order of their degrees;

for each v € V' in the order do

en(u) < d(u);

for each v € N (u) with d(v) > d(u) do

L d(v) <+ d(v) — 1;

reorder V' accordingly;

vertex A E

N SN R W N -

8 return cn(u) of everyu € V 62

lterate over all the vertices. If the degree of
neighbouring vertex u of vertex v is greater than the
degree of v, decrease the degree of u by 1. Then, for
the line 7, swap the positions of u and the first
vertex with the same degree as u’s original degree.
Because we use the bin sort, the time complexity of
reorder the array is O(n). Thus, the total time
complexity for core decomposition is O(m).

UNSW COMP9312_23T2

Core Decomposition using Flat Array

Loop according to the order of degrees in the table,
start from the vertex A with the minimum degree.

vertex A E D B I H G C F

degree[B]>degree[A], then degree[B] « degree[B]-1, degree[B]=2,
swap the positions of B and the first vertex with the same degree as
B’s original degree (i.e., swap the position of B and D).

vertex A E B D I H G C F

63 UNSW COMP9312_23T2

Core Decomposition using Flat Array

The next vertex in the table is E, E’'s neighbors are C and F.

vertex A E B D I H G C

For vertex C,

degree[C]>degree[E],

then degree|[C] < degree[C]-1, degree[C]=3,
swap the position of C and G.

vertex A E B D I H C G

64 UNSW COMP9312_23T2

Core Decomposition using Flat Array

The next vertex in the table is E, E’'s neighbors are C and F.

vertex A E B D I H C G

For vertex F,
degree[F]>degree[E],
then degree[F] < degree[F]-1, degree[F]=4.

vertex A E

65 UNSW COMP9312_23T2

Core Decomposition using Flat Array

The next vertex in the table is B, B's unvisited neighbors are C and D.

vertex A E B D I H C G F

For vertex C,

degree[C]>degree[B],

then degree[C] < degree[C]-1, degree[C]=2.
Swap the position of C and D.

vertex A E B C I H D G F

66 UNSW COMP9312_23T2

Core Decomposition using Flat Array

The next vertex in the table is B, B's neighbors are C and D.

vertex A E B C I H D G

For neighbor D,

degree[D]>degree[B],

then degree[D] < degree[D]-1, degree[D]=2.
Exchange the position of D and I.

vertex A E B C D H I G

67 UNSW COMP9312_23T2

Core Decomposition using Flat Array

The next vertex in the table is C, C's unvisited neighbors are D and F.

vertex A E B C D H I G F

For vertex D, the degree are equal to degree[C]
Then the order of table would not change.

degree[F] is updated to 3.
Exchange the position of F and G.

vertex A E B C D H I F G

68 UNSW COMP9312_23T2

Core Decomposition using Flat Array

The next vertex in the table is D, D’s unvisited neighbor is G.

vertex A E B C D H I F

For vertex G,
degree[G]>degree[D],
then degree[G] « degree[G]-1, degree[G]=3.

vertex A E B C D H I F

69 UNSW COMP9312_23T2

Core Decomposition using Flat Array

The next vertex in the table is H, H's unvisited neighbors are F, G and I.

vertex A E B C D H F G

For vertices F, G and |,
degree[F]=degree[G]= degree[H]=degree]l].
Then the order of table would not change.

vertex A E B C D H F G

70 UNSW COMP9312_23T2

Core Decomposition using Flat Array

The next vertex in the table is I, I's unvisited neighbors are F and G.

vertex A E B C D

For vertex F, G,
degree[F]=degree[G]= degree]l].
Then the order of table would not change.

71 UNSW COMP9312_23T2

Core Decomposition using Flat Array

The next vertex in the table is F, F's unvisited neighbor is G

vertex A E B C D H F

For vertex G, degree[G]=degree][F].
Then the order of table would not change.

72 UNSW COMP9312_23T2

Core Decomposition using Flat Array

vertex A E B C D H F

73 UNSW COMP9312_23T2

Core Decomposition using Flat Array

After we traverse all edges in this graph, we get
the core number of each vertex in O(m) time.

vertex A E B C D H F G

74 UNSW COMP9312_23T2

Core Decomposition using Flat Array

What we need to implement the O(m) algorithm
1. An array to sort vertices in non-decreasing order of degree

2. An array to locate the start position for each degree

3. An array to get the position of each vertex id

4. An array to maintain the degree of each vertex

vertex A E D B I H G C F

75 UNSW COMP9312_23T2

An example

E
Q.
@
o
)
1)

d b 1: function K-CORES(Graph G)
I 3 0 5 7 2: initialize(d, b, D, p, G)
2 4 1 6 10 3: for all i < 1 ton do
3 7 7 7 16 4: v < DJ[i]
4 4 10 8 11 5: for all u € Ng(v) do
5 2 13 10 1 6: if d[u] > d[v] then
7 du < d[u], pu < p[u]
S 3 12 1? ?) 8: pw < bldu], w <+ D[pw]
9: if u # w then
8 2) 4 10: Dlpu] <+ w, Dlpw| < u
9 3 138 11 plu] + pw, plw] + pu
10 2 2 95 12: end if
11 5 4 13 13: b[du]++, d[u]——
12 6 14 15 14: end if
13 3 11 9 15: end for
14 4 16 192 16: end for
17: return d
12 § & 12 18: end function

https://www.vldb.org/pvldb/vol9/p13-khaouid.pdf

76 UNSW COMP9312_23T2

Variants of K-Core
(optional)

k-Core on Directed Graphs Optional

Directed graphs: citation networks, WWW, social networks (by following
relations), P2P networks, etc.

(k,1)-Core on a directed graph: the maximal subgraph F where each
vertex has at least k out-neighbors in F and at least [in-neighbors in F.

Part of a directed graph: : (2,2)-core

Giatsidis, Christos, Dimitrios M. Thilikos, and Michalis Vazirgiannis. "D-cores: measuring collaboration of
directed graphs based on degeneracy." Knowledge and information systems 35.2 (2013): 311-343.

78 UNSW COMP9312_23T2

K-Core on Weighted Graphs Optional

Weighted graphs: air transportation networks, co-author
networks, social networks (with tie strength), etc.

The weighted degree of a vertex i, Neighbor set of |

] Edge weight of (i, j)
d'(i) = Xjeng) Wij

The k-core: d'(i) = k for every vertex i inside.

Eidsaa, Marius, and Eivind Almaas. "S-core network decomposition: A generalization of k-core analysis to
weighted networks." Physical Review E 88.6 (2013): 062819.

Garas, Antonios, Frank Schweitzer, and Shlomo Havlin. "A k-shell decomposition method for weighted
networks." New Journal of Physics 14.8 (2072): 083030.

79 UNSW COMP9312_23T2

K-Core on Bipartite Graphs Optional

Bipartite graphs: the vertices are divided into two disjoint sets U and L such that
every edge connects a vertex in U to one in L.

(3,2)—cor

v
2 e
A3

. “,E.‘-’Er 8 \!_\Fk

X-ITEINN

V

Se7en The Godfather LLeon Star Wars

6,;’:”/‘75!./-!5 .\ L iﬁ] /f)’l)

-

Avengers The Matrix WALL-E X-Man

The («,)-core of G consists of two node sets U’ € U and L' € L s.t. the subgraph S induced by U' U L'

is the maximal subgraph of G in which all the nodes in U’ have degree at least « in S and all the nodes
in L' have degree at least /7 in S.

Liu, Boge, et al. “Efficient (a,b)-core Computation an Index-based Approach”. WWW, 20179.

80 UNSW COMP9312_23T2

Online computation of (q, B)-core gL

The algorithm filters out the upper/lower vertices whose degrees are less
than alpha/beta (i.e., iteratively remove vertices without enough degrees).

Danhao Ding, Hui Li, Zhipeng Huang, and Nikos Mamoulis.2017. Efficient fault-tolerant group recommendation using alpha-
beta-core. In Proceedings of the 2017 ACM on Conference on Information and Knowledge Management.2047-2050.

81 UNSW COMP9312_23T2

Online computation of (q, B)-core gL

Remove u3 and its incident edges, which are colored red.

Example of computing (2,3)-core

Danhao Ding, Hui Li, Zhipeng Huang, and Nikos Mamoulis.2017. Efficient fault-tolerant group recommendation using alpha-
beta-core. In Proceedings of the 2017 ACM on Conference on Information and Knowledge Management.2047-2050.

82 UNSW COMP9312_23T2

Online computation of (q, B)-core gL

Remove v1, v2, v6, v/ and their incident
edges, which are colored red.

Example of computing (2,3)-core

Danhao Ding, Hui Li, Zhipeng Huang, and Nikos Mamoulis.2017. Efficient fault-tolerant group recommendation using
alpha-beta-core. In Proceedings of the 2017 ACM on Conference on Information and Knowledge Management.2047-2050.

83 UNSW COMP9312_23T2

Online computation of (q, B)-core gL

Remove u5, ub and their incident edges,
which are colored red.

Example of computing (2,3)-core

Danhao Ding, Hui Li, Zhipeng Huang, and Nikos Mamoulis.2017. Efficient fault-tolerant group recommendation using
alpha-beta-core. In Proceedings of the 2017 ACM on Conference on Information and Knowledge Management.2047—-2050.

84 UNSW COMP9312_23T2

Online computation of (q, B)-core gL

Remove v5 and their incident edges, which are colored red.

Example of computing (2,3)-core

Danhao Ding, Hui Li, Zhipeng Huang, and Nikos Mamoulis.2017. Efficient fault-tolerant group recommendation using
alpha-beta-core. In Proceedings of the 2017 ACM on Conference on Information and Knowledge Management.2047—-2050.

85 UNSW COMP9312_23T2

Online computation of (q, B)-core gL

Return the subgraph when all vertices
satisfy the degree constraints.

Example of computing (2,3)-core
Danhao Ding, Hui Li, Zhipeng Huang, and Nikos Mamoulis.2017. Efficient fault-tolerant group recommendation using

alpha-beta-core. In Proceedings of the 2017 ACM on Conference on Information and Knowledge Management.2047—-2050.

86 UNSW COMP9312_23T2

Other Models

Why not k-core?

88 UNSW COMP9312_23T2

K-Truss

A maximal subgraph where each edge is contained in at
least k-2 triangles in the subgraph, i.e., each edge has a
support of at least k-2 in the subgraph.

J. Cohen. Trusses: Cohesive subgraphs for social network analysis. National Security
Agency Technical Report, page 16, 2008.

« The strength of a tie can be estimated by the number of triangles containing it.

M. Wang, C. Wang, J. X. Yu, and J. Zhang, Community detection in social networks: An in-depth
benchmarking study with a procedure-oriented framework. PVLDB, 8(10):998-1009, 2015.

« High quality on some community metrics.
» High accuracy on approximating some ground-truth communities.
« The most efficient one among all the evaluated algorithms.

89 UNSW COMP9312_23T2

Properties of k-Truss

A maximal subgraph where each edge is contained in at least k-2 triangles in the
subgraph.

— —

Each k-truss of G is a subgraph of a (k — 1)- - ~ o
core of G.

Proof scratch:
- Each edge is contained in at least k-2 triangle.

- To ensure this, each vertex should have at least k-1
neighbors, i.e., for a vertex u, if the edge (u, v) is N

contained in k-2 triangles, there should be at least k- T~— 7
2 common neighbors of u and v.

Cohen, Jonathan. "Trusses: Cohesive subgraphs for social network analysis." National Security Agency
Technical Report16 (2008): 3-1.

90 UNSW COMP9312_23T2

K-Truss Computation

1. Compute the (k-1)-core.

2. Compute the support of each edge.

3. Recursively delete each edge with support of less than k-2.
4. Delete the isolated vertices.

91 UNSW COMP9312_23T2

K-Truss Computation

1. Compute the (k-1)-core.

2. Compute the support of each edge.

3. Recursively delete each edge with support of less than k-2.
4. Delete the isolated vertices.

92 UNSW COMP9312_23T2

K-Truss Computation

1. Compute the (k-1)-core.

2. Compute the support of each edge.

3. Recursively delete each edge with support of less than k-2.
4. Delete the isolated vertices.

93 UNSW COMP9312_23T2

K-Truss Computation

1. Compute the (k-1)-core.

2. Compute the support of each edge.

3. Recursively delete each edge with support of less than k-2.
4. Delete the isolated vertices.

94 UNSW COMP9312_23T2

K-Truss Computation

1. Compute the (k-1)-core.

2. Compute the support of each edge.

3. Recursively delete each edge with support of less than k-2.
4. Delete the isolated vertices.

95 UNSW COMP9312_23T2

K-Truss Computation

1. Compute the (k-1)-core.

2. Compute the support of each edge.

3. Recursively delete each edge with support of less than k-2.
4. Delete the isolated vertices.

S

k

96 UNSW COMP9312_23T2

K-Truss Computation

1. Compute the (k-1)-core.

2. Compute the support of each edge.

3. Recursively delete each edge with support of less than k-2.
4.

Delete the isolated vertices.

UNSW COMP9312_23T2

97

K-Truss Computation

1. Compute the (k-1)-core.

2. Compute the support of each edge.

3. Recursively delete each edge with support of less than k-2.
4. Delete the isolated vertices.

98 UNSW COMP9312_23T2

K-Truss Computation

1. Compute the (k+1)-core.

2. Compute the support of each edge.

3. Recursively delete each edge with support of less than k-2.
4.

Delete the isolated vertices.
4-truss

99 UNSW COMP9312_23T2

K-Edge Connected Component

3-ECCs

A graph is k-edge connected if it is still connected after removing
any set of k — 1 edges from it.

A k-Edge Connected Component (k-ECC) is a maximal k-edge
connected subgraph

108 UNSW COMP9312_23T2

K-Vertex Connected Component

4-Core: {G1UG2UG3UG4} 4-ECC: {G1UG2UG3, G4} 4-VCC: {G1, G2, G3, G4}

A graph is k-vertex connected if it is still connected after
removing any set of k — 1 vertices from it.

A k-Vertex Connected Component (k-VCC) is a maximal k-vertex
connected subgraph.

109 UNSW COMP9312_23T2

Cliques

Every pair of vertices pair is connected
A clique is called maximal clique if there exist no other bigger cliques that contain it
Also called complete graph

R. D. Luce and A. D. Perry, “A method of matrix analysis of group structure,” Psychometrika, vol. 14,
no. 2, pp. 95-116, 1949

110 UNSW COMP9312_23T2

Variations of cliques: quasi-clique
Quasi-clique: relax on density or degree.

total # of edges:
— . VI(lV]-1
b, VI(vI-1)
2

y = 0.8

H. Matsuda, T. Ishihara, A. Hashimoto. Classifying molecular sequences using a linkage graph with
their pairwise similarities. Theor. Comput. Sci., 1999

111 UNSW COMP9312_23T2

Cohesive Subgraph Models

Global cohesiveness: cliques and variants
Node and edge constraints: k-core, k-truss

Connectivity: k-ECC, k-VCC

112 UNSW COMP9312_23T2

Comparison of models

Cohesive level

N

Core-based-models Truss-based-models Cligue-based-models

am

Danhao Ding, Hui Li, Zhipeng Huang, and Nikos Mamoulis.2017. Efficient fault-tolerant group recommendation using alpha-beta-core.
In Proceedings of the 2017 ACM on Conference on Information and Knowledge Management.2047-2050.

Z.Zou, “Bitruss decomposition of bipartite graphs,” in DASFAA. Springer, 2016, pp. 218-233.

Yun Zhang, Charles A Phillips, Gary L Rogers, Erich J Baker, Elissa J Chesler, and Michael A Langston. 2014. On finding bicliques in
bipartite graphs:a novel algorithm and its application to the integration of diverse biological data types. BMC bioinformatics
15,1(2014),110.

Computation complexity

113 UNSW COMP9312_23T2

Learning Outcome

- Know the definition of the introduced cohesive subgraph models

- Understand the algorithms to compute k-core and the process
to compute k-truss

114 UNSW COMP9312_23T2

