
Subgraph Matching
COMP9312_23T2

UNSW COMP9312_23T2

Outline
- Basic Concepts

- Triangle Counting

- General Subgraph Matching

2

UNSW COMP9312_23T2

Graph Homomorphism
Two graphs G and H are homomorphic, if there exists a function f: VG->VH between
vertices of the graph such that if {a,b} is an edge in G then {f(a),f(b)} is an edge in H.

3

An idea case…

G H

UNSW COMP9312_23T2

Graph Homomorphism (cont)
Some other cases …

4

f(a) = 1 f(b) = 2
f(c) = 1 f(d) = 2

f(e) = 3

Try to find the mapping function

All bipartite graphs can be mapped into an edge

UNSW COMP9312_23T2

Graph Isomorphism
Two graphs G and H are isomorphic, if there exists a bijection f: VG->VH between vertices
of the graph such that if {a,b} is an edge in G then {f(a),f(b)} is an edge in H.

5

f(a) = 4

f(b) = 5

f(c) = 1

f(d) = 3

f(e) = 2

f(a) = 4

f(b) = 5

f(c) = 3

f(d) = 1

f(e) = 2

or

G

H

UNSW COMP9312_23T2

Subgraph Matching
Given a query graph Q and a data graph G, compute (count/enumerate) all subgraphs of G
that are isomorphic to Q.

All matching instances of f(1),f(2),f(3),f(4):

6

Query graph

Data graph

UNSW COMP9312_23T2

Subgraph Matching
Given a query graph Q and a data graph G, compute (count/enumerate) all subgraphs of G
that are isomorphic to Q.

All matching instances of f(1),f(2),f(3),f(4):
<b,c,a,e> <c,b,a,e>
<a,c,b,d> <c,a,b,d>
<g,f,e,a> <f,g,e,a>
<e,g,f,h> <g,e,f,h>

7

Query graph

Data graph
The query graph is

symmetric

UNSW COMP9312_23T2

Application
 Bioinformatics of protein-protein interaction networks

 Chemistry (similarity between chemical compounds)

 Node representation

 Malware detection

 System analysis

 …

8

UNSW COMP9312_23T2

Subgraph Matching
 Exact counting/enumeration
 Specific patterns (triangle, k-clique, butterfly, …)
 General subgraphs

 Approximate counting (estimation)
 Probability theory
 Graph Neural Networks

9

UNSW COMP9312_23T2

Triangle
Counting

UNSW COMP9312_23T2

Triangle Counting
Count all triangles in a graph.

11

Five triangles exist in this example.

UNSW COMP9312_23T2

Triangle Counting

Latapy, M. (2008). Main-memory triangle computations for very large (sparse (power-law)) graphs. Theoretical computer
science, 407(1-3), 458-473.

Edge-iterator: Given an edge (u, v), any triangle that includes the edge
must contain a third vertex w that has connections to both of u and v.
Thus, we can obtain any triangles containing edge (u, v) based on the
intersection of N(u) and N(v). For each edge, the edge-iterator returns
the set of triangles associated with that edge, and when repeated on
all edges, the set of all triangle solutions is made available.

Duplication: If we use the above method to calculate the triangles,
then we will count a triangle repeatedly.

12

UNSW COMP9312_23T2

Triangle Counting

Orientation technique (without duplication): Each undirected edge is
mapped to a directed edge where the direction (i.e., orientation) is decided
by the priority of its endpoints in the vertex-ordering (i.e., u->v if u has a
higher priority than v). We refer to vertex u as a pivot vertex if u has two
out-going edges. We can association a triangle in the undirected graph
with only one pivot vertex to ensure one and only one instance of this
triangle in the output, which significantly improves the performance.

Priority: The priority of vertices can be determined by the degree of each
vertex. The smaller the degree; the smaller the priority. If the degrees of
two vertices are the same, it can be determined by the alphabetical order
or numerical order of the vertices.

Latapy, M. (2008). Main-memory triangle computations for very large (sparse (power-law))
graphs. Theoretical computer science, 407(1-3), 458-473.

13

UNSW COMP9312_23T2

Compact Forward (CF) Algorithm: We denote the set of outgoing-neighbors
of vertex u in G as 𝑁𝑁+ 𝑢𝑢 , and the out-degree as 𝑑𝑑𝑑𝑑𝑑𝑑+ 𝑢𝑢 = 𝑁𝑁+ 𝑢𝑢 . In line 1,
undirected graph G is transformed into a directed graph G via the
orientation technique. (Line 2 onward follows the edge-iterator framework.)
In Line 3, triangles are enumerated by iterating through the outgoing
neighborhoods rather than the full neighborhood. In Line 4, a merge-based
intersection identifies the common out-going neighbors of u and v, denoted
by T. A set of triangles (u, v, w) is then output for every vertex w ∈ T.

Triangle Counting

14

UNSW COMP9312_23T2

The adjacency list of each vertex is unsorted: The time complexity
of CF algorithm is: 𝑂𝑂(∑(𝑢𝑢,𝑣𝑣)∈𝐸𝐸 𝑑𝑑𝑑𝑑𝑑𝑑+ 𝑢𝑢 ∗ 𝑑𝑑𝑑𝑑𝑑𝑑+ 𝑣𝑣).

Proof: We need to check whether there are common neighbors in the
adjacency list of u and v. For each neighbor of u, we need to check
𝑑𝑑𝑑𝑑𝑑𝑑+ 𝑣𝑣 times in the adjacency list of v, u has 𝑑𝑑𝑑𝑑𝑑𝑑+ 𝑢𝑢 neighbors, so the time
complexity of finding common neighbor of two vertices (line 4 in the pseudo
code) is 𝑂𝑂(𝑑𝑑𝑑𝑑𝑑𝑑+ 𝑢𝑢 ∗ 𝑑𝑑𝑑𝑑𝑑𝑑+ 𝑣𝑣). Thus, the total time complexity of CF
algorithm is: 𝑂𝑂(∑(𝑢𝑢,𝑣𝑣)∈𝐸𝐸 𝑑𝑑𝑑𝑑𝑑𝑑+ 𝑢𝑢 ∗ 𝑑𝑑𝑑𝑑𝑑𝑑+ 𝑣𝑣).

Adjacency list of u:

Adjacency list of v:

B A D I E

B F I

For the sake of brevity, here we
only give the out-neighbors of u
and v and the degree of vertices
other than u, v is higher than the
degree of u, v.

u v

A B D E F I

N+ (u)

N+ (v)

Triangle Counting

15

UNSW COMP9312_23T2

Triangle Counting
If the adjacency list of each vertex is sorted, the merge-based
intersection operation at Line 4 takes 𝑂𝑂(𝑑𝑑𝑑𝑑𝑑𝑑+ 𝑢𝑢 + 𝑑𝑑𝑑𝑑𝑑𝑑+ 𝑣𝑣). The
time complexity of CF algorithm is: 𝑂𝑂(∑(𝑢𝑢,𝑣𝑣)∈𝐸𝐸 𝑑𝑑𝑑𝑑𝑑𝑑+ 𝑢𝑢 + 𝑑𝑑𝑑𝑑𝑑𝑑+ 𝑣𝑣).

Ordered adjacency list of u:

Ordered adjacency list (with order) of v:

A B D E I

B F I
u v

A B D E F I

N+ (u)

N+ (v)

16

UNSW COMP9312_23T2

A hash table has been built for each vertex: The time complexity of CF algorithm is:
𝑂𝑂(∑ 𝑢𝑢,𝑣𝑣 ∈𝐸𝐸 min(𝑑𝑑𝑑𝑑𝑑𝑑+ 𝑢𝑢 ，𝑑𝑑𝑑𝑑𝑑𝑑+ 𝑣𝑣)) = 𝑂𝑂(∑ 𝑢𝑢,𝑣𝑣 ∈𝐸𝐸 min(𝑑𝑑𝑑𝑑𝑑𝑑 𝑢𝑢 ，𝑑𝑑𝑑𝑑𝑑𝑑 𝑣𝑣)) = 𝑂𝑂(α ⋅ 𝑚𝑚) = 𝑂𝑂(𝑚𝑚1.5).

Suppose a hash table has been built for each vertex based on the out-going
neighbors in the oriented graph. At Line 4 of Algorithm CF, we may choose the
vertex with larger number of neighbors as the hash table for intersection operation
with 𝑂𝑂(min(𝑑𝑑𝑑𝑑𝑑𝑑+ 𝑢𝑢 ，𝑑𝑑𝑑𝑑𝑑𝑑+ 𝑣𝑣)) look-up cost.

Triangle Counting

Graph arboricity

17

https://en.wikipedia.org/wiki/Arboricity

https://en.wikipedia.org/wiki/Arboricity

UNSW COMP9312_23T2

Choosing the vertex with larger number of neighbors as the hash table for intersection operation.

Adjacency list of u:

Adjacency list of v:

A B D E I

B F I

Here is an example of u’s hash table. We use division hashing
to make this hash table. The value of the vertex is replaced by
the corresponding number (A: 1, B: 2, D: 4, E: 5, I: 9) and the
hash function used is X % 5.

Because the query time complexity of hash table is O(1), we
only need to query 𝑑𝑑𝑑𝑑𝑑𝑑+ 𝑣𝑣 times.

Final result: there are two common neighbors B and I.

0
1

2

3

4

5

6

…

A

B

D I

N+(u)

N+ (v)

E

Triangle Counting

18

UNSW COMP9312_23T2

Triangle Counting

A hash table is being built on the fly: The time complexity of CF algorithm is:
𝑂𝑂 ∑ 𝑢𝑢,𝑣𝑣 ∈𝐸𝐸′ 𝑑𝑑𝑑𝑑𝑑𝑑+(𝑣𝑣) = 𝑂𝑂 ∑ 𝑢𝑢,𝑣𝑣 ∈𝐸𝐸′ 𝑑𝑑𝑑𝑑𝑑𝑑(𝑣𝑣) = 𝑂𝑂 ∑ 𝑢𝑢,𝑣𝑣 ∈𝐸𝐸 min(deg 𝑢𝑢 ,𝑑𝑑𝑑𝑑𝑑𝑑 𝑣𝑣)
= 𝑂𝑂(α ⋅ 𝑚𝑚) = 𝑂𝑂(𝑚𝑚1.5).

Coding practice~

E’: the set of all directed edges

• Building a hash table for neighbors of each vertex takes too much
space for big graphs.

• Utilize the degree order
• Scan the smaller set -> scan the out neighbor of v

19

UNSW COMP9312_23T2

General Subgraph
Matching

Optional

UNSW COMP9312_23T2

Subgraph Matching
Avoid redundancy for symmetric query graphs by
enforcing f(1)<f(2)

All matching instances of f(1),f(2),f(3),f(4):
<a,c,b,d> <c,a,b,d>
<b,c,a,e> <c,b,a,e>
<f,g,e,a> <g,f,e,a>
<e,g,f,h> <g,e,f,h>

21

Query graph

Data graph

1 and 2 are equivalent in
this case

Optional

UNSW COMP9312_23T2

Subgraph Matching

1. Set up a matching order

2. Match following the order

3. Apply pruning rules

22

Query graph

Data graph

Optional

UNSW COMP9312_23T2

Subgraph Matching
Matching order <1,2,3,4>

23

Query graph

Data graph

Pruning rules:

 degree

 connectivity

. . .

Matching tree

Optional

UNSW COMP9312_23T2

Further Optimization
 Matching plan

 order plan (vertex-based)

 join plan (vertex-based)

 Efficient common neighbor computation

24

Query graph

Data graph

UNSW COMP9312_23T2

K-Clique Enumeration
A clique is a graph in which every pair
of vertices are connected.

A k-clique is a clique with k vertices.

Can you design an algorithm to
enumerate all k-cliques?

25

5-clique

4-clique

	Slide Number 1
	Outline
	Graph Homomorphism
	Graph Homomorphism (cont)
	Graph Isomorphism
	Subgraph Matching
	Subgraph Matching
	Application
	Subgraph Matching
	Triangle Counting
	Triangle Counting
	Triangle Counting
	Triangle Counting
	Triangle Counting
	Triangle Counting
	Triangle Counting
	Triangle Counting
	Triangle Counting
	Triangle Counting
	General Subgraph�Matching
	Subgraph Matching
	Subgraph Matching
	Subgraph Matching
	Further Optimization
	K-Clique Enumeration

