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Outline
- Reachability
 Transitive closure
 Optimal Tree cover
 Two-Hop labelling

- Shortest Path
 Dijkstra’s algorithm
 A* algorithm
 Floyd-Warshall algorithm
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Shortest path 
1. Single-source shortest path problem (finding the shortest paths between a given 
vertex v and all other vertices in the graph)
- BFS 
- Dijkstra’s algorithm (very similar to Prim’s algorithm; assumes all weights are positive)
- If we only want to find the shortest path to one given goal node, A* algorithm

2. All pair shortest path (find the pairwise shortest distances as well as the corresponding 
paths)
- Floyd-Warshall algorithm

4
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BFS-based shortest path

Find the shortest path from vertex u to v.  
A naive BFS-based approach: 
(1) conduct a BFS from the source vertex u
(2) for each visited vertex, record its parent in the searching tree
(3) when the target vertex v is visited, terminate BFS.
(4) recursively return the path from u to v.

5
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Example
Find the shortest path from A to D by performing a breadth-first traversal

Push the first vertex A into the queue:

A

6
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Example

Pop A and push B, C, E. 

B C E

Parents of visited 
vertices:
B: A
C: A
E: A

7
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Example
Pop B and push D into the queue.

Since D is found, terminate BFS! Based on the recorded parent vertices, one shortest 
path is A->B->D.

•

C E D

Parents of visited 
vertices:
B: A
C: A
D: B
E: A

8
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BFS-based shortest path
Question: 
1. Can we guarantee that this path is the shortest? If so, is it the only shortest path? 

2. Time complexity? Space complexity? 

3. Can we use the above algorithm to solve the single-source shortest path problem and the 

all pairs shortest path problem? 

Yes, we can. No, in the above example,  A->C->D is another path with 
length 2. 

The time complexity is O(m) which is the same with BFS. Slightly faster in practice 
because of the early termination. The space complexity is O(n) since we need to record 
the parent vertex of each visited vertex. 

Yes.

9
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Motivation

11

Single-source shortest path problem (finding the shortest paths between a given vertex v and all 
other vertices in the graph)

Suppose you are at vertex A
• You are aware of all vertices adjacent to it
• This information is either in an adjacency list or adjacency matrix

Q: Is 5 the shortest distance to B via the edge (A, B)?
Q: Are you guaranteed that the shortest path to C is (A, C), or
that (A, D) is the shortest path to vertex D?
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Motivation
Let’s see where we can go from B

By some simple arithmetic, we can determine that
• There is a path (A, B, E) of length 5 + 7 = 12
• There is a path (A, B, F) of length 5 + 3 = 8

12
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Motivation
Is (A, B, F) is the shortest path from vertex A to F?
• Why or why not?

Yes, because 5+3<9, 5+3<15, and 3 is the smallest 
weight from B.

13
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Motivation
Are we guaranteed that any other path we are currently aware of is also 
going to be the shortest path?

No. 

14



UNSW COMP9312_23T2

Motivation
Okay, let’s visit vertex F
• We know the shortest path is (A, B, F) and it’s of length 8

15
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Motivation
There are three edges exiting vertex F, so we have paths:
• (A, B, F, E) of length 8 + 6 = 14
• (A, B, F, G) of length 8 + 4 = 12
• (A, B, F, C) of length 8 + 2 = 10

16
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Motivation
By observation:
• The path (A, B, F, E) is longer than (A, B, E)
• The path (A, B, F, C) is shorter than the path (A, C)

17
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Motivation
At this point, we’ve discovered the shortest paths to:
• Vertex B:  (A, B) of length 5
• Vertex F:  (A, B, F) of length 8

18
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Motivation
At this point, we have the shortest distances to B and F
• Which remaining vertex are we currently guaranteed to have the shortest distance 

to?
D. Because D is the unvisited vertex which has the shortest distance right now.

19
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Dijkstra’s algorithm
• Like Prim’s algorithm, we initially don’t know the distance to any vertex except the 

initial vertex. Thus, we require an array of distances, all initialized to infinity 
except for the source vertex, which is initialized to 0.

• Each time we visit a vertex, we will examine all adjacent vertices.

We need to track visited vertices—a Boolean table of size |V|

How to track the shortest path to each vertex?

Do I have to store (A, B, F) as the shortest path to vertex F?

We really only have to record that the shortest path to vertex F came from vertex B

We would then determine that the shortest path to vertex B came from vertex A

Thus, we need an array of previous vertices, all initialized to null

20
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Dijkstra’s algorithm
We will iterate |V| times:

• Find that unvisited vertex v that has a minimum distance to it. Mark 
it as having been visited.

• Consider every adjacent vertex w that is unvisited:
- Is the distance to v plus the weight of the edge (v, w) less than our 
currently known shortest distance to w.  If so, update the shortest 
distance to w and record v as the previous pointer.

• Continue iterating until all vertices are visited or all remaining 
vertices have a distance to them of infinity.

21
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Example
Consider the game of Risk from Parker Brothers
• A game of world domination
• The world is divided into 42 connected regions
• The regions are vertices and edges indicate adjacent regions

22



UNSW COMP9312_23T2

Example
We’ll focus on Asia. Here is our abstract representation.
Let us give a weight to each of the edges. 
Find the shortest distance from Kamchatka (K) to every other region
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Example
We set up our table as follows.

Vertex Visited Distance Previous
A F ∞ Ø
B F ∞ Ø
C F ∞ Ø
D F ∞ Ø
E F ∞ Ø
F F ∞ Ø
G F ∞ Ø
H F ∞ Ø
I F ∞ Ø
J F ∞ Ø
K F 0 Ø
L F ∞ Ø

24
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Example
We visit vertex K

Vertex Visited Distance Previous
A F ∞ Ø
B F ∞ Ø
C F ∞ Ø
D F ∞ Ø
E F ∞ Ø
F F ∞ Ø
G F ∞ Ø
H F ∞ Ø
I F ∞ Ø
J F ∞ Ø
K T 0 Ø
L F ∞ Ø

25
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Example
Vertex K has four neighbors:  H, I, J and L

Vertex Visited Distance Previous
A F ∞ Ø
B F ∞ Ø
C F ∞ Ø
D F ∞ Ø
E F ∞ Ø
F F ∞ Ø
G F ∞ Ø
H F ∞ Ø
I F ∞ Ø
J F ∞ Ø
K T 0 Ø
L F ∞ Ø26
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Example
We have now found at least one path to each of these vertices

Vertex Visited Distance Previous
A F ∞ Ø
B F ∞ Ø
C F ∞ Ø
D F ∞ Ø
E F ∞ Ø
F F ∞ Ø
G F ∞ Ø
H F 8 K
I F 12 K
J F 17 K
K T 0 Ø
L F 16 K27
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Example
We’re finished with vertex K.
To which vertex are we now guaranteed we have the shortest path?

Vertex Visited Distance Previous
A F ∞ Ø
B F ∞ Ø
C F ∞ Ø
D F ∞ Ø
E F ∞ Ø
F F ∞ Ø
G F ∞ Ø
H F 8 K
I F 12 K
J F 17 K
K T 0 Ø
L F 16 K28
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Example
We visit vertex H:  the shortest path is (K, H) of length 8
Vertex H has four unvisited neighbors:  E, G, I, L

Vertex Visited Distance Previous
A F ∞ Ø
B F ∞ Ø
C F ∞ Ø
D F ∞ Ø
E F ∞ Ø
F F ∞ Ø
G F ∞ Ø
H T 8 K
I F 12 K
J F 17 K
K T 0 Ø
L F 16 K29
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Example
Consider these paths:
• (K, H, E) of length 8 + 6 = 14 (K, H, G) of length 8 + 11 = 19
• (K, H, I) of length 8 + 2 = 10 (K, H, L) of length 8 + 9 = 17

Which of these are
shorter than any
known path?

Vertex Visited Distance Previous
A F ∞ Ø
B F ∞ Ø
C F ∞ Ø
D F ∞ Ø
E F ∞ Ø
F F ∞ Ø
G F ∞ Ø
H T 8 K
I F 12 K
J F 17 K
K T 0 Ø
L F 16 K30



UNSW COMP9312_23T2

Example
We already have a shorter path (K, L), but we update the other three

Vertex Visited Distance Previous
A F ∞ Ø
B F ∞ Ø
C F ∞ Ø
D F ∞ Ø
E F 14 H
F F ∞ Ø
G F 19 H
H T 8 K
I F 10 H
J F 17 K
K T 0 Ø
L F 16 K31
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Example
We are finished with vertex H. 
Which vertex do we visit next?

Vertex Visited Distance Previous
A F ∞ Ø
B F ∞ Ø
C F ∞ Ø
D F ∞ Ø
E F 14 H
F F ∞ Ø
G F 19 H
H T 8 K
I F 10 H
J F 17 K
K T 0 Ø
L F 16 K32
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Example
The path (K, H, I) is the shortest path from K to I of length 10
Vertex I has two unvisited neighbors:  G and J

Vertex Visited Distance Previous
A F ∞ Ø
B F ∞ Ø
C F ∞ Ø
D F ∞ Ø
E F 14 H
F F ∞ Ø
G F 19 H
H T 8 K
I T 10 H
J F 17 K
K T 0 Ø
L F 16 K33



UNSW COMP9312_23T2

Example
Consider these paths:

(K, H, I, G) of length 10 + 3 = 13 (K, H, I, J) of length 10 + 18 = 28

Vertex Visited Distance Previous
A F ∞ Ø
B F ∞ Ø
C F ∞ Ø
D F ∞ Ø
E F 14 H
F F ∞ Ø
G F 19 H
H T 8 K
I T 10 H
J F 17 K
K T 0 Ø
L F 16 K34
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Example
We have discovered a shorter path to vertex G, but (K, J) is still the shortest 
known path to vertex J

Vertex Visited Distance Previous
A F ∞ Ø
B F ∞ Ø
C F ∞ Ø
D F ∞ Ø
E F 14 H
F F ∞ Ø
G F 13 I
H T 8 K
I T 10 H
J F 17 K
K T 0 Ø
L F 16 K35
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Example
Which vertex can we visit next?

Vertex Visited Distance Previous
A F ∞ Ø
B F ∞ Ø
C F ∞ Ø
D F ∞ Ø
E F 14 H
F F ∞ Ø
G F 13 I
H T 8 K
I T 10 H
J F 17 K
K T 0 Ø
L F 16 K36
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Example
The path (K, H, I, G) is the shortest path from K to G of length 13. 
Vertex G has three unvisited neighbors:  E, F and J. 

Vertex Visited Distance Previous
A F ∞ Ø
B F ∞ Ø
C F ∞ Ø
D F ∞ Ø
E F 14 H
F F ∞ Ø
G T 13 I
H T 8 K
I T 10 H
J F 17 K
K T 0 Ø
L F 16 K37
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Example
Consider these paths:
• (K, H, I, G, E) of length 13 + 15 = 28 (K, H, I, G, F) of length 13 + 4 = 17
• (K, H, I, G, J) of length 13 + 19 = 32

• Which do we update? Vertex Visited Distance Previous
A F ∞ Ø
B F ∞ Ø
C F ∞ Ø
D F ∞ Ø
E F 14 H
F F ∞ Ø
G T 13 I
H T 8 K
I T 10 H
J F 17 K
K T 0 Ø
L F 16 K38
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Example
We have now found a path to vertex F

Vertex Visited Distance Previous
A F ∞ Ø
B F ∞ Ø
C F ∞ Ø
D F ∞ Ø
E F 14 H
F F 17 G
G T 13 I
H T 8 K
I T 10 H
J F 17 K
K T 0 Ø
L F 16 K39
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Example
Where do we visit next?

Vertex Visited Distance Previous
A F ∞ Ø
B F ∞ Ø
C F ∞ Ø
D F ∞ Ø
E F 14 H
F F 17 G
G T 13 I
H T 8 K
I T 10 H
J F 17 K
K T 0 Ø
L F 16 K40
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Example
The path (K, H, E) is the shortest path from K to E of length 14.
Vertex E has four unvisited neighbors:  B, C, D and F.

Vertex Visited Distance Previous
A F ∞ Ø
B F ∞ Ø
C F ∞ Ø
D F ∞ Ø
E T 14 H
F F 17 G
G T 13 I
H T 8 K
I T 10 H
J F 17 K
K T 0 Ø
L F 16 K41
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Example
The path (K, H, E) is the shortest path from K to E of length 14
Vertex E has four unvisited neighbors:  B, C, D and F

Vertex Visited Distance Previous
A F ∞ Ø
B F ∞ Ø
C F ∞ Ø
D F ∞ Ø
E T 14 H
F F 17 G
G T 13 I
H T 8 K
I T 10 H
J F 17 K
K T 0 Ø
L F 16 K42



UNSW COMP9312_23T2

Example
Consider these paths:
• (K, H, E, B) of length 14 + 5 = 19 (K, H, E, C) of length 14 + 1 = 15
• (K, H, E, D) of length 14 + 10 = 24 (K, H, E, F) of length 14 + 22 = 36

• Which do we update? Vertex Visited Distance Previous
A F ∞ Ø
B F ∞ Ø
C F ∞ Ø
D F ∞ Ø
E T 14 H
F F 17 G
G T 13 I
H T 8 K
I T 10 H
J F 17 K
K T 0 Ø
L F 16 K43
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Example
We’ve discovered paths to vertices B, C, D

Vertex Visited Distance Previous
A F ∞ Ø
B F 19 E
C F 15 E
D F 24 E
E T 14 H
F F 17 G
G T 13 I
H T 8 K
I T 10 H
J F 17 K
K T 0 Ø
L F 16 K44
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Example
Which vertex is next?

Vertex Visited Distance Previous
A F ∞ Ø
B F 19 E
C F 15 E
D F 24 E
E T 14 H
F F 17 G
G T 13 I
H T 8 K
I T 10 H
J F 17 K
K T 0 Ø
L F 16 K45
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Example
We’ve found that the path (K, H, E, C) of length 15 is the shortest
path from K to C.
Vertex C has one unvisited neighbor, B. 

Vertex Visited Distance Previous
A F ∞ Ø
B F 19 E
C T 15 E
D F 24 E
E T 14 H
F F 17 G
G T 13 I
H T 8 K
I T 10 H
J F 17 K
K T 0 Ø
L F 16 K46
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Example
The path (K, H, E, C, B) is of length 15 + 7 = 22.
We have already discovered a shorter path through vertex E.

Vertex Visited Distance Previous
A F ∞ Ø
B F 19 E
C T 15 E
D F 24 E
E T 14 H
F F 17 G
G T 13 I
H T 8 K
I T 10 H
J F 17 K
K T 0 Ø
L F 16 K47
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Example
Where to next?

Vertex Visited Distance Previous
A F ∞ Ø
B F 19 E
C T 15 E
D F 24 E
E T 14 H
F F 17 G
G T 13 I
H T 8 K
I T 10 H
J F 17 K
K T 0 Ø
L F 16 K48



UNSW COMP9312_23T2

Example
We now know that (K, L) is the shortest path between these
two points.
Vertex L has no unvisited neighbors.

Vertex Visited Distance Previous
A F ∞ Ø
B F 19 E
C T 15 E
D F 24 E
E T 14 H
F F 17 G
G T 13 I
H T 8 K
I T 10 H
J F 17 K
K T 0 Ø
L T 16 K49
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Example

Where to next?
Does it matter if we visit vertex F first or vertex J first?

Vertex Visited Distance Previous
A F ∞ Ø
B F 19 E
C T 15 E
D F 24 E
E T 14 H
F F 17 G
G T 13 I
H T 8 K
I T 10 H
J F 17 K
K T 0 Ø
L T 16 K50
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Example
Let’s visit vertex F first.
It has one unvisited neighbor, vertex D

Vertex Visited Distance Previous
A F ∞ Ø
B F 19 E
C T 15 E
D F 24 E
E T 14 H
F T 17 G
G T 13 I
H T 8 K
I T 10 H
J F 17 K
K T 0 Ø
L T 16 K51
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Example
The path (K, H, I, G, F, D) is of length 17 + 14 = 31.
This is longer than the path we’ve already discovered.

Vertex Visited Distance Previous
A F ∞ Ø
B F 19 E
C T 15 E
D F 24 E
E T 14 H
F T 17 G
G T 13 I
H T 8 K
I T 10 H
J F 17 K
K T 0 Ø
L T 16 K52
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Example
Now we visit vertex J.
It has no unvisited neighbors

Vertex Visited Distance Previous
A F ∞ Ø
B F 19 E
C T 15 E
D F 24 E
E T 14 H
F T 17 G
G T 13 I
H T 8 K
I T 10 H
J T 17 K
K T 0 Ø
L T 16 K53
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Example
Next we visit vertex B, which has two unvisited neighbors:
• (K, H, E, B, A) of length 19 + 20 = 39 (K, H, E, B, D) of length 19 + 13 = 32
• We update the path length to A

Vertex Visited Distance Previous
A F 39 B
B T 19 E
C T 15 E
D F 24 E
E T 14 H
F T 17 G
G T 13 I
H T 8 K
I T 10 H
J T 17 K
K T 0 Ø
L T 16 K54
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Example
Next we visit vertex D
The path (K, H, E, D, A) is of length 24 + 21 = 45
We don’t update A.

Vertex Visited Distance Previous
A F 39 B
B T 19 E
C T 15 E
D T 24 E
E T 14 H
F T 17 G
G T 13 I
H T 8 K
I T 10 H
J T 17 K
K T 0 Ø
L T 16 K55
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Example
Finally, we visit vertex A.
It has no unvisited neighbors and there are no unvisited vertices left.
We are done.

Vertex Visited Distance Previous
A T 39 B
B T 19 E
C T 15 E
D T 24 E
E T 14 H
F T 17 G
G T 13 I
H T 8 K
I T 10 H
J T 17 K
K T 0 Ø
L T 16 K56
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Example
Thus, we have found the shortest path from vertex K to each of
the other vertices

Vertex Visited Distance Previous
A T 39 B
B T 19 E
C T 15 E
D T 24 E
E T 14 H
F T 17 G
G T 13 I
H T 8 K
I T 10 H
J T 17 K
K T 0 Ø
L T 16 K57



UNSW COMP9312_23T2

Example
Using the previous pointers, we can reconstruct the paths

Vertex Visited Distance Previous
A T 39 B
B T 19 E
C T 15 E
D T 24 E
E T 14 H
F T 17 G
G T 13 I
H T 8 K
I T 10 H
J T 17 K
K T 0 Ø
L T 16 K58
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Example
Note that this table defines a rooted parental tree.
The source vertex K is at the root.
The previous pointer is the parent of the vertex in the tree

Vertex Previous
A B
B E
C E
D E
E H
F G
G I
H K
I H
J K
K Ø
L K59



UNSW COMP9312_23T2

Comments on Dijkstra’s algorithm
Questions:

• What if at some point, all unvisited vertices have a distance ∞?
• This means that the graph is unconnected
• We have found the shortest paths to all vertices in the connected subgraph containing 

the source vertex  

• What if we just want to find the shortest path between vertices vj and vk?
• Apply the same algorithm, but stop when we are visiting vertex vk

• Does the algorithm change if we have a directed graph?
• No
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Implementation and analysis
• The initialization requires O(|V|) memory and run time

We iterate |V| – 1 times, each time finding the unvisited closest vertex
• Iterating through the table requires is O(|V|) time
• Each time we find a vertex, we must check all of its neighbors
• With an adjacency matrix, the run time is O(|V|(|V| + |V|)) = O(|V|2)
• With an adjacency list, the run time is O(|V|2 + |E|) = O(|V|2) as |E| = O(|V|2)

Can we do better? 
Recall, we only need the vertex with the shortest distance next. We can use min-heap similar as the 
Prim’s algorithm. 
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Min-heap-based optimization
a min heap

The initialization requires O(|V|) memory and run time
– The min heap requires O(|V|) memory which contains the shortest distance of all the 

vertices from the source vertex
 We iterate |V|  times, each time finding the unvisited closest vertex to the source

– Obtain the shortest distance from the min heap O(1), maintain the heap O(log(|V|))
– The work required for this is O(|V| log(|V|))

 Is this all the work that is necessary?
– Recall that for the closest vertex in an iteration, we try to update the distance of all its 

neighbors, thus there are O(|E|) updates in total and each update in the heap requires 
O(log(|V|)). 

– Thus, the work required for this is O(|E| log(|V|))
 Thus, the total run time is O(|V| log(|V|) + |E| log(|V|)) = O(|E| log(|V|))
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3 T

S

B

A

1

C

D E

1

1 1

2√2

2

2
3

Vertex Visited Distance Previous
A F ∞ Ø
B F ∞ Ø
C F ∞ Ø
D F ∞ Ø
E F ∞ Ø
S T 0 Ø
T F ∞ Ø

Quick Exercise
Given the graph below, apply Dijkstra’s Algorithm to find the shortest paths from S.
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3 T

S

B

A

1

C

D E

1

1 1

2√2

2

2
3

Vertex Visited Distance Previous
A F ∞ Ø
B F ∞ Ø
C F ∞ Ø
D F ∞ Ø
E F ∞ Ø
S T 0 Ø
T F ∞ Ø

Quick Exercise
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3 T

S

B

A

1

C

D E

1

1 1

2√2

2

2
3

Vertex Visited Distance Previous
A F ∞ Ø
B F 1 S
C F ∞ Ø
D F 1 S
E F ∞ Ø
S T 0 Ø
T F ∞ Ø

Quick Exercise
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3 T

S

B

A

1

C

D E

1

1 1

2√2

2

2
3

Vertex Visited Distance Previous
A F ∞ Ø
B T 1 S
C F ∞ Ø
D F 1 S
E F ∞ Ø
S T 0 Ø
T F ∞ Ø

Quick Exercise
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3 T

S

B

A

1

C

D E

1

1 1

2√2

2

2
3

Vertex Visited Distance Previous
A F ∞ Ø
B T 1 S
C F ∞ Ø
D F 1 S
E F ∞ Ø
S T 0 Ø
T F ∞ Ø

Quick Exercise
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3 T

S

B

A

1

C

D E

1

1 1

2√2

2

2
3

Vertex Visited Distance Previous
A F 3 B
B T 1 S
C F 2 B
D F 1 S
E F ∞ Ø
S T 0 Ø
T F ∞ Ø

Quick Exercise
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3 T
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B
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C
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2√2

2

2
3

Vertex Visited Distance Previous
A F 3 B
B T 1 S
C F 2 B
D T 1 S
E F ∞ Ø
S T 0 Ø
T F ∞ Ø

Quick Exercise
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3 T

S

B

A

1

C

D E

1
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2√2

2

2
3

Vertex Visited Distance Previous
A F 3 B
B T 1 S
C F 2 B
D T 1 S
E F ∞ Ø
S T 0 Ø
T F ∞ Ø

Quick Exercise
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3 T

S

B

A

1

C

D E

1

1 1

2√2

2

2
3

Vertex Visited Distance Previous
A F 3 B
B T 1 S
C F 2 B
D T 1 S
E F 3 D
S T 0 Ø
T F ∞ Ø

Quick Exercise
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3 T

S

B

A

1

C

D E

1

1 1

2√2

2

2
3

Vertex Visited Distance Previous
A F 3 B
B T 1 S
C T 2 B
D T 1 S
E F 3 D
S T 0 Ø
T F ∞ Ø

Quick Exercise
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3 T

S

B

A

1

C

D E

1

1 1

2√2

2

2
3

Vertex Visited Distance Previous
A F 3 B
B T 1 S
C T 2 B
D T 1 S
E F 3 D
S T 0 Ø
T F ∞ Ø

Quick Exercise
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3 T

S

B

A

1

C

D E

1

1 1

2√2

2

2
3

Vertex Visited Distance Previous
A F 3 B
B T 1 S
C T 2 B
D T 1 S
E F 3 D
S T 0 Ø
T F 2+2√2 C

Quick Exercise
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3 T

S

B

A

1

C

D E

1

1 1

2√2

2

2
3

Vertex Visited Distance Previous
A T 3 B
B T 1 S
C T 2 B
D T 1 S
E F 3 D
S T 0 Ø
T F 2+2√2 C

Quick Exercise
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3 T

S

B

A

1

C

D E

1

1 1

2√2

2

2
3

Vertex Visited Distance Previous
A T 3 B
B T 1 S
C T 2 B
D T 1 S
E F 3 D
S T 0 Ø
T F 2+2√2 C

Quick Exercise
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3 T
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B

A
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C

D E
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1 1

2√2

2

2
3

Vertex Visited Distance Previous
A T 3 B
B T 1 S
C T 2 B
D T 1 S
E T 3 D
S T 0 Ø
T F 2+2√2 C

Quick Exercise
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3 T
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B
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2√2
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Vertex Visited Distance Previous
A T 3 B
B T 1 S
C T 2 B
D T 1 S
E T 3 D
S T 0 Ø
T F 2+2√2 C

Quick Exercise
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3 T

S

B

A

1

C

D E

1

1 1

2√2

2

2
3

Vertex Visited Distance Previous
A T 3 B
B T 1 S
C T 2 B
D T 1 S
E T 3 D
S T 0 Ø
T T 2+2√2 C

Quick Exercise
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Summary for Dijkstra’s algorithm 
Single source shortest distance/path for weighted graphs
Compute shortest distance/path for a pair of vertices in practice:

Bidirectional search
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A* Search
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Motivation: Triangle Inequality
Starting from a specific starting node of a graph, if we 
aim to find the shortest path to a given goal node.
We can use the A* search which is faster than 
Dijkstra’s algorithm, which uses a hypothetical 
shortest distance to weight the paths.
The requirement is that the distances satisfy the 
triangle inequality, that is, the distance between a and 
b is less than the distance from a to c plus the 
distance from c to b. 
• All Euclidean distances satisfy

the triangle inequality 

http://xkcd.com/85/82
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A quick view of A* search
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Background
Assume we have a heuristic lower bound for the length of a path between 
any two vertices.

For instance, for a graph embedded in a plane, the shortest distance is the 
Euclidean distance. We can use this to guide our search for a path.
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Idea

Consider this map of Slovenia
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Idea

Suppose we want to go from Kamnik to Bohinj
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Idea
A lower bound for the length of the shortest path to Bohinj is h(Kamnik, 
Bohinj) = 53 km

53 km
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Idea
Any actual path must be at least as long as 53 km

53 km
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Idea
Suppose we have a 28 km shortest path from Kamnik to Kranj: d(Kamnik, 
Kranj) = 28 km

28 km
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Idea
A lower bound on the shortest distance from Kranj to the destination is now 
h(Kranj, Bohinj) = 32 km 

28 km

32 km
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Idea

Thus, we weight of the path up to Kranj is
 w(Kranj) = d(Kamnik, Kranj) + h(Kranj, Bohinj) = 60 km 

32 km
28 km
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Idea

Any path extending this given path to Bohimj must be at least 60 
km

28 km

32 km
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Idea
The value w(Kranj) represents the shortest possible distance from Kamnik to 
Bohinj given that we follow the path to Kranj

As with Dijkstra’s algorithm, we must start with the null path starting at 
Kamnik:

w(Kamnik) =  d(Kamnik, Kamnik) + h(Kamnik, Bohimj)
=  0 km + 53 km

53 km
Bohimj

Kamnik
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Algorithm Description

Suppose we are finding the shortest path from vertex a to a 
vertex z

The A* search algorithm initially:
• Marks each vertex as unvisited
• Starts with an array containing only the initial vertex

• The value of any vertex v in the array is the weight w(v) which assumes 
we have found the a shortest path to v
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Algorithm Description

The algorithm then iterates:
• Visit the vertex u with the least weight

• Mark the vertex u of the path as visited
• Ignore all visited adjacent vertices v
• For each remaining unvisited adjacent vertex v:

• Determine if w(v) = d(a, u) + d(u, v) + h(v, z) is less than the current weight of v, and if 
so, update the path leading to v and its weight

Continue iterating until the destination vertex z is visited
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Comparison with Dijkstra’s Algorithm

This differs from Dijkstra’s algorithm which gives weight only to 
the known path

Difference:
• Dijkstra’s algorithm radiates out from the initial vertex
• The A* search algorithm directs its search towards the destination
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Comparison with Dijkstra’s Algorithm

Graphically, we can suggest the behaviour of the two algorithms 
as follows:

Suppose we are moving from a to z:

Representative search patterns for Dijkstra’s and the A* search algorithms

z
aa

z
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Optimally Guarantees?

The A* search algorithm will NOT always find the optimal path 
with a poor heuristic distance

• Find the shortest path from A to C:
• w(B) = 1 + 5 = 6
• w(C) = 3 + 0 = 3

• Therefore, C is visited next
and as it is the destination, we
are finished
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Admissible Heuristics
This heuristic overestimates the actual distance from B to C.
The Euclidean distance doesn’t suffer this problem:
The path the crow flies is always shorter than the road the wolf runs.
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Admissible Heuristics
Admissible heuristics h:
• Let d(u, v) represent the actual shortest distance from u to v
• A heuristic h(u, v) is admissible if  h(u, v) ≤ d(u, v)
• The heuristic is optimistic or a lower bound on the distance

When the heuristic is admissible, then it is guaranteed to return the shortest 
path. 

Using the Euclidean distance between two points on a map is clearly an 
admissible heuristic
• The flight of the crow is shorter than the run of the wolf
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3 T

S

B

A

1

C

D E

2.1

1 2.1

2√2

2

2
3

Quick Exercise
Given the graph, apply A* Algorithm to find the shortest 
path from S to T. Use Euclidean distance as the heuristic. 

The coordinates of the vertices:
A = (0, 3)
B = (0, 1)
C = (1, 1)
D = (1, 0)
E = (3, 0)
S = (0, 0)
T = (3, 3)

Vertex Visited Distance Heuristic Total Previous
A F ∞ 3 ∞ Ø
B F ∞ √13 ∞ Ø
C F ∞ 2√2 ∞ Ø
D F ∞ √13 ∞ Ø
E F ∞ 3 ∞ Ø
S T 0 3√2 3√2 Ø
T F ∞ 0 ∞ Ø

𝑑 𝑢	, 𝑣 = (𝑢! − 𝑣!)"+ 𝑢# − 𝑢#
"
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3 T

S

B

A

1

C

D E

1

2√2

2

2
3

Quick Exercise

Vertex Visited Distance Heuristic Total Previous
A F ∞ 3 ∞ Ø
B F ∞ √13 ∞ Ø
C F ∞ 2√2 ∞ Ø
D F ∞ √13 ∞ Ø
E F ∞ 3 ∞ Ø
S T 0 3√2 3√2 Ø
T F ∞ 0 ∞ Ø

2.1

2.1

Since S has the minimum weight, we update the distances of its 
neighbors B and D. 
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3 T

S

B
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2
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Quick Exercise

Vertex Visited Distance Heuristic Total Previous
A F ∞ 3 ∞ Ø
B F 1 √13 1+√13 S
C F ∞ 2√2 ∞ Ø
D F 1 √13 1+√13 S
E F ∞ 3 ∞ Ø
S T 0 3√2 3√2 Ø
T F ∞ 0 ∞ Ø

The distances of B and D are updated. They now have the smallest weights (total). 
Next, we visit B. 
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Quick Exercise

Vertex Visited Distance Heuristic Total Previous
A F ∞ 3 ∞ Ø
B T 1 √13 1+√13 S
C F ∞ 2√2 ∞ Ø
D F 1 √13 1+√13 S
E F ∞ 3 ∞ Ø
S T 0 3√2 3√2 Ø
T F ∞ 0 ∞ Ø

Mark B as visited. 
Next, we update the distances of A and C. 
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Quick Exercise

Vertex Visited Distance Heuristic Total Previous
A F 3 3 6 B
B T 1 √13 1+√13 S
C F 3.1 2√2 3.1+2√2 B
D F 1 √13 1+√13 S
E F ∞ 3 ∞ Ø
S T 0 3√2 3√2 Ø
T F ∞ 0 ∞ Ø

After updating the distances and the weights, D has the minimum weight 
and will be visited next. 
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Quick Exercise

Vertex Visited Distance Heuristic Total Previous
A F 3 3 6 B
B T 1 √13 1+√13 S
C F 3.1 2√2 3.1+2√2 B
D T 1 √13 1+√13 S
E F ∞ 3 ∞ Ø
S T 0 2√3 2√3 Ø
T F ∞ 0 ∞ Ø

Mark D as visited. 
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Quick Exercise

Vertex Visited Distance Heuristic Total Previous
A F 3 3 6 B
B T 1 √13 1+√13 S
C F 3.1 2√2 3.1+2√2 B
D T 1 √13 1+√13 S
E F 3 3 6 D
S T 0 3√2 3√2 Ø
T F ∞ 0 ∞ Ø

2.1

2.1

Update the distances of E. 
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Quick Exercise

Vertex Visited Distance Heuristic Total Previous
A F 3 3 6 B
B T 1 √13 1+√13 S
C T 3.1 2√2 3.1+2√2 B
D T 1 √13 1+√13 S
E F 3 3 6 D
S T 0 3√2 3√2 Ø
T F ∞ 0 ∞ Ø

Mark C as visited. 
Update the distances of C’s neighbor: T. 
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Quick Exercise

Vertex Visited Distance Heuristic Total Previous
A F 3 3 6 B
B T 1 √13 1+√13 S
C T 3.1 2√2 3.1+2√2 B
D T 1 √13 1+√13 S
E F 3 3 6 D
S T 0 3√2 3√2 Ø
T T 3.1+2√2 0 3.1+2√2 C

Note that in this exercise, the vertices A and E remain unvisited. 
This is because they are pruned by the heuristic function. 
The weight suggests that vertex C is guaranteed to be a better option to explore. 

The target vertex is now found. 
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All-pairs Shortest Path

This topic:
• We will look at the Floyd-Warshall algorithm for:

• Finding all shortest distances (the shortest distance between all pairs 
of nodes)

• Finding the paths corresponding to these distances
• We conclude by finding the transitive closure
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Problem
Observation:  Any algorithm that finds the shortest path between all pairs 
must consider, each pair of vertices; therefore, a lower bound on the 
execution would be O(|V|2).

We will look at the Floyd-Warshall algorithm.
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Strategy
First, let’s consider only edges that connect vertices directly: 

Here, wi,j is the weight of the edge connecting vertices i and j

In C++, we would define a two-dimensional array

double d[num_vertices][num_vertices];

(0)
, ,

0 If 
If there is an edge from  to 
Otherwise

i j i j

i j
d w i j

=ì
ï= í
ï¥î
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Strategy
Consider this graph of seven vertices

The edges defining the values         and         are highlighted( )0
5,3d

( )0
6,7d
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Strategy
Suppose now, we want to see whether or not the path going through 
vertex v1 is shorter than a direct edge?
• Is                                   ?

• Is                                   ?  

( ) ( ) ( )0 0 0
5,3 5,1 1,3d d d> +
( ) ( ) ( )0 0 0
6,7 6,1 1,7d d d> +
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Strategy

Thus, for each pair of edges, we will define          by calculating: 
( ) ( ) ( ) ( ){ }1 0 0 0
, , ,1 1,min ,i j i j i jd d d d= +

( )1
,i jd
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Strategy

Note that                    and                    ; thus, we need just run the 
algorithm for each pair of vertices:

( ) ( )1 0
1, 1,j jd d= ( ) ( )1 0

,1 ,1i id d=

for ( int i = 1; i <= n; ++i ) {
for ( int j = 1; j <= num_n; ++j ) {

d[i][j] = min( d[i][j], d[i][1] + d[1][j] );
}

}
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The General Step
Define as the shortest distance, but only allowing 
intermediate visits to vertices v1, v2, …, vk–1 
• Suppose we have an algorithm that has found these values for all pairs

118
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,
k
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The General Step
How could we find  ; that is, the shortest path allowing 
intermediate visits to vertices v1, v2, …, vk–1 , vk ?

119
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The General Step
With v1, v2, …, vk–1 as intermediates, have assumed we have found 
the shortest paths from vi to vj, vi to vk and vk to vj . The only possible 
shorter path including vk would be the path from vi to vk continuing 
from there to vj

Thus, we calculate

120
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The General Step
Finding this for all pairs of vertices gives us all shortest paths 
from
vi to vj possibly going through vertices v1, v2, …, vk
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The Floyd-Warshall Algorithm
Thus, we have found the Floyd-Warshall algorithm:

 

double d[num_vertices][num_vertices];

// Initialize the matrix d:  Theta(|V|^2)
//   ...

// Run Floyd-Warshall
for ( int k = 0; k < num_vertices; ++k ) {

for ( int i = 0; i < num_vertices; ++i ) {
for ( int j = 0; j < num_vertices; ++j ) {

d[i][j] = min( d[i][j], d[i][k] + d[k][j] );
}

}
}

Run time?   O(|V|3)
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Example
Consider this graph 

The adjacency matrix is

This would define our matrix D = (dij)

0 0.100 0.101 0.142 0.277
0.465 0 0.191 0.192 0.587
0.245 0.554 0 0.333 0.931
1.032 0.668 0.656 0 0.151
0.867 0.119 0.352 0.398 0

æ ö
ç ÷
ç ÷
ç ÷
ç ÷
ç ÷
ç ÷
è ø
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Example
With the first pass, k = 1, we attempt passing through vertex v1

We would start:
(2, 3) → (2, 1, 3)
0.191 ≯ 0.465 + 0.101  

0 0.100 0.101 0.142 0.277
0.465 0 0.191 0.192 0.587
0.245 0.554 0 0.333 0.931
1.032 0.668 0.656 0 0.151
0.867 0.119 0.352 0.398 0

æ ö
ç ÷
ç ÷
ç ÷
ç ÷
ç ÷
ç ÷
è ø
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Example
With the first pass, k = 1, we attempt passing through vertex v1

We would start:
(2, 4) → (2, 1, 4)
0.192 ≯ 0.465 + 0.142  

0 0.100 0.101 0.142 0.277
0.465 0 0.191 0.192 0.587
0.245 0.554 0 0.333 0.931
1.032 0.668 0.656 0 0.151
0.867 0.119 0.352 0.398 0

æ ö
ç ÷
ç ÷
ç ÷
ç ÷
ç ÷
ç ÷
è ø
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Example
With the first pass, k = 1, we attempt passing through vertex v1

We would start:
(2, 5) → (2, 1, 5)

0.587 ≯ 0.465 + 0.277  

0 0.100 0.101 0.142 0.277
0.465 0 0.191 0.192 0.587
0.245 0.554 0 0.333 0.931
1.032 0.668 0.656 0 0.151
0.867 0.119 0.352 0.398 0

æ ö
ç ÷
ç ÷
ç ÷
ç ÷
ç ÷
ç ÷
è ø
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Example
With the first pass, k = 1, we attempt passing through vertex v1

Here is a shorter path:
(3, 2) → (3, 1, 2)
0.554 > 0.245 + 0.100 = 0.345  

0 0.100 0.101 0.142 0.277
0.465 0 0.191 0.192 0.587
0.245 0.554 0 0.333 0.931
1.032 0.668 0.656 0 0.151
0.867 0.119 0.352 0.398 0

æ ö
ç ÷
ç ÷
ç ÷
ç ÷
ç ÷
ç ÷
è ø
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Example
With the first pass, k = 1, we attempt passing through vertex v1

We update the table 
(3, 2) → (3, 1, 2)
0.554 > 0.245 + 0.100 = 0.345  

0 0.100 0.101 0.142 0.277
0.465 0 0.191 0.192 0.587
0.245 0.345 0 0.333 0.931
1.032 0.668 0.656 0 0.151
0.867 0.119 0.352 0.398 0

æ ö
ç ÷
ç ÷
ç ÷
ç ÷
ç ÷
ç ÷
è ø

128



UNSW COMP9312_23T2

Example
With the first pass, k = 1, we attempt passing through vertex v1

And a second shorter path:
(3, 5) → (3, 1, 5)
0.931 > 0.245 + 0.277 = 0.522

0 0.100 0.101 0.142 0.277
0.465 0 0.191 0.192 0.587
0.245 0.345 0 0.333 0.931
1.032 0.668 0.656 0 0.151
0.867 0.119 0.352 0.398 0

æ ö
ç ÷
ç ÷
ç ÷
ç ÷
ç ÷
ç ÷
è ø
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Example
With the first pass, k = 1, we attempt passing through vertex v1

We update the table

0 0.100 0.101 0.142 0.277
0.465 0 0.191 0.192 0.587
0.245 0.345 0 0.333 0.522
1.032 0.668 0.656 0 0.151
0.867 0.119 0.352 0.398 0

æ ö
ç ÷
ç ÷
ç ÷
ç ÷
ç ÷
ç ÷
è ø
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Example
With the first pass, k = 1, we attempt passing through vertex v1

Continuing:
(4, 2) → (4, 1, 2)

0.668 ≯ 1.032 + 0.100

In fact, no other shorter paths
through vertex v1 exist

0 0.100 0.101 0.142 0.277
0.465 0 0.191 0.192 0.587
0.245 0.554 0 0.333 0.931
1.032 0.668 0.656 0 0.151
0.867 0.119 0.352 0.398 0

æ ö
ç ÷
ç ÷
ç ÷
ç ÷
ç ÷
ç ÷
è ø
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Example
With the next pass, k = 2, we attempt passing through vertex v2

There are three shorter paths:
(5, 1) → (5, 2, 1)

0.867 > 0.119 + 0.465 = 0.584
(5, 3) → (5, 2, 3)

0.352 > 0.119 + 0.191 = 0.310

(5, 4) → (5, 2, 4)
0.398 > 0.119 + 0.192 = 0.311

0 0.100 0.101 0.142 0.277
0.465 0 0.191 0.192 0.587
0.245 0.345 0 0.333 0.522
1.032 0.668 0.656 0 0.151
0.867 0.119 0.352 0.398 0

æ ö
ç ÷
ç ÷
ç ÷
ç ÷
ç ÷
ç ÷
è ø
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Example
With the next pass, k = 2, we attempt passing through vertex v2

We update the table

0 0.100 0.101 0.142 0.277
0.465 0 0.191 0.192 0.587
0.245 0.345 0 0.333 0.522
1.032 0.668 0.656 0 0.151
0.584 0.119 0.310 0.311 0

æ ö
ç ÷
ç ÷
ç ÷
ç ÷
ç ÷
ç ÷
è ø
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Example
With the next pass, k = 3, we attempt passing through vertex v3

There are three shorter paths:
(2, 1) → (2, 3, 1)

0.465 > 0.191 + 0.245 = 0.436  
(4, 1) → (4, 3, 1)

1.032 > 0.656 + 0.245 = 0.901

(5, 1) → (5, 3, 1)
0.584 > 0.310 + 0.245 = 0.555

0 0.100 0.101 0.142 0.277
0.465 0 0.191 0.192 0.587
0.245 0.345 0 0.333 0.522
1.032 0.668 0.656 0 0.151
0.584 0.119 0.310 0.311 0

æ ö
ç ÷
ç ÷
ç ÷
ç ÷
ç ÷
ç ÷
è ø
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Example
With the next pass, k = 3, we attempt passing through vertex v3

We update the table

0 0.100 0.101 0.142 0.277
0.436 0 0.191 0.192 0.587
0.245 0.345 0 0.333 0.522
0.901 0.668 0.656 0 0.151
0.555 0.119 0.310 0.311 0

æ ö
ç ÷
ç ÷
ç ÷
ç ÷
ç ÷
ç ÷
è ø
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0 0.100 0.101 0.142 0.277
0.436 0 0.191 0.192 0.587
0.245 0.345 0 0.333 0.522
0.901 0.668 0.656 0 0.151
0.555 0.119 0.310 0.311 0

æ ö
ç ÷
ç ÷
ç ÷
ç ÷
ç ÷
ç ÷
è ø

Example
With the next pass, k = 4, we attempt passing through vertex v4

There are two shorter paths:
(2, 5) → (2, 4, 5)

0.587 > 0.192 + 0.151  
(3, 5) → (3, 4, 5)

0.522 > 0.333 + 0.151
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0 0.100 0.101 0.142 0.277
0.436 0 0.191 0.192 0.343
0.245 0.345 0 0.333 0.484
0.901 0.668 0.656 0 0.151
0.555 0.119 0.310 0.311 0

æ ö
ç ÷
ç ÷
ç ÷
ç ÷
ç ÷
ç ÷
è ø

Example
With the next pass, k = 4, we attempt passing through vertex v4

We update the table

137



UNSW COMP9312_23T2

0 0.100 0.101 0.142 0.277
0.436 0 0.191 0.192 0.343
0.245 0.345 0 0.333 0.484
0.901 0.668 0.656 0 0.151
0.555 0.119 0.310 0.311 0

æ ö
ç ÷
ç ÷
ç ÷
ç ÷
ç ÷
ç ÷
è ø

Example
With the last pass, k = 5, we attempt passing through vertex v5

There are three shorter paths:
(4, 1) → (4, 5, 1)

0.901 > 0.151 + 0.555 = 0.706
(4, 2) → (4, 5, 2)

0.668 > 0.151 + 0.119 = 0.270
(4, 3) → (4, 5, 3)

0.656 > 0.151 + 0.310 = 0.461
138



UNSW COMP9312_23T2

0 0.100 0.101 0.142 0.277
0.436 0 0.191 0.192 0.343
0.245 0.345 0 0.333 0.484
0.706 0.270 0.461 0 0.151
0.555 0.119 0.310 0.311 0

æ ö
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ç ÷
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ç ÷
è ø

Example
With the last pass, k = 5, we attempt passing through vertex v5

We update the table

139



UNSW COMP9312_23T2

Example
Thus, we have a table of all shortest paths:

0 0.100 0.101 0.142 0.277
0.436 0 0.191 0.192 0.343
0.245 0.345 0 0.333 0.484
0.706 0.270 0.461 0 0.151
0.555 0.119 0.310 0.311 0

æ ö
ç ÷
ç ÷
ç ÷
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What about the Shortest Path?
This algorithm finds the shortest distances, but what are the paths 
corresponding to those shortest distances?

Recall that with Dijkstra’s algorithm, we could find the shortest paths by 
recording the previous node.

You would start at the end and work your way back… (AKA. Back-
tracking)
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What about the Shortest Path?
Suppose the shortest path from vi to vj is as follows:  
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What about the Shortest Path?
Is this path consists of  (vi, v5) and the shortest path from v5 to vj?

If there was a shorter path from vi to vj through v5 that didn’t follow v2, v13, etc., then we 
would also find a shorter path from v5 to vj
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What about the Shortest Path?
Now, suppose we have the shortest path from vi to vj which passes 
through the vertices v1, v2, …, vk–1
• In this example, the next vertex in the path is v5
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What about the Shortest Path?
What if we find a shorter path passing through vk?
• In this example, all we’d have to do is now remember that the new path has v4 as the 

second node—the rest of the path would be recursively stored as the shortest path 
from v4 to vj
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What about the Shortest Path?
In this case, let us store the shortest path moving forward. 

Pij stores the next vertex in the shortest path between i and j.

Initialize:

Now, if we find a shorter path, update the value
• This matrix will store the next vertex in the list in the shortest path starting at vertex vi

,

If 
If there is an edge from  to 
Otherwise

i j

i j
p j i j

Æ =ì
ï= í
ïÆî
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What about the Shortest Path?
Thus, if we ever find a shorter path, update it the next node:

unsigned int p[num_vertices][num_vertices];

// Initialize the matrix p:  O(|V|^2)
//   ...

// Run Floyd-Warshall
for ( int k = 0; k < num_vertices; ++k ) {

for ( int i = 0; i < num_vertices; ++i ) {
for ( int j = 0; j < num_vertices; ++j ) {

if ( d[i][j] > d[i][k] + d[k][j] ) {
p[i][j] = p[i][k];
d[i][j] = d[i][k] + d[k][j];

}
}

}
}

, ,i j i kp p=
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Example
In our original example, initially, the next node is exactly that:

This would define our
matrix P = (pij)

2 3 4 5
1 3 4 5
1 2 4 5
1 2 3 5
1 2 3 4
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2 3 4 5
1 3 4 5
1 2 4 5
1 2 3 5
1 2 3 4
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Example
With the first pass, k = 1, we attempt passing through vertex v1

There are two shorter paths:
(3, 2) → (3, 1, 2)

0.554 > 0.245 + 0.100  
(3, 5) → (3, 1, 5)

0.931 > 0.245 + 0.277

149



UNSW COMP9312_23T2

2 3 4 5
1 3 4 5
1 1 4 1
1 2 3 5
1 2 3 4

-æ ö
ç ÷-ç ÷
ç ÷-
ç ÷

-ç ÷
ç ÷-è ø

Example
With the first pass, k = 1, we attempt passing through vertex v1

We update each of these
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Example
After all the steps, we end up with the matrix P = (pi,j):

2 3 4 5
3 3 4 4
1 1 4 4
5 5 5 5
2 2 2 2
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2 3 4 5
3 3 4 4
1 1 4 4
5 5 5 5
2 2 2 2
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Example
These are all the adjacent edges that are still the shortest distance

For each of these, pi,j = j
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Example
From vertex v2, p2,3 = 3 and p2,4 = 4; we go directly to vertices v3 and v4

But p2,1 = 3 and p3,1 = 1;
the shortest path to v1 is (2, 3, 1)
Also, p2,5 = 4 and p4,5 = 5;
the shortest path to v5 is (2, 4, 5)

2 3 4 5
3 3 4 4
1 1 4 4
5 5 5 5
2 2 2 2
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Example
From vertex v3, p3,1 = 1 and p3,4 = 4; we go directly to vertices v1 and v4

But p3,2 = 1 and p1,2 = 2;

the shortest path to v2 is (3, 1, 2)

Also, p3,5 = 4 and p4,5 = 5;

the shortest path to v5 is (3, 4, 5)

2 3 4 5
3 3 4 4
1 1 4 4
5 5 5 5
2 2 2 2
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Example
From vertex v4, p4,5 = 5; we go directly to vertex v5

But p4,1 = 5, p5,1 = 2, p2,1 = 3, p3,1 = 1;
the shortest path to v1 is (4, 5, 2, 3, 1)

2 3 4 5
3 3 4 4
1 1 4 4
5 5 5 5
2 2 2 2
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Example
From vertex v5, p5,2 = 2; we go directly to vertex v2

But p5,4 = 2 and p2,4 = 4;
the shortest path to v4 is (5, 2, 4)

2 3 4 5
3 3 4 4
1 1 4 4
5 5 5 5
2 2 2 2
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Learning Outcome

- Understand the Dijkstra’s algorithm, A* algorithm, and Floyd-Warshall algorithm. 

- Know how to use these algorithms to solve the shortest-path problems.
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Index-based 
shortest 
distance



Optional

UNSW COMP9312_23T2

Drawbacks of online method

159

Drawbacks of online search methods (Dijkstra, A*…)

§ Takes much time if distance is long.

§ Explores too much unnecessary vertices.



Optional
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Index-based shortest distance

160

Further improve the query efficiency by precomputing small structure to maintain 

distances.

- Landmark-based global summary structure.

- Tree traversal.

https://dl.acm.org/doi/10.1145/2463676.2465315
https://dl.acm.org/doi/10.1145/3183713.3196913

https://dl.acm.org/doi/10.1145/2463676.2465315
https://dl.acm.org/doi/10.1145/3183713.3196913
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What researchers are doing…

161

§ Different Index Structure (Maintenance for dynamic updates)

§ Shortest Distance vs Shortest Path

§ Shortest Path Counting & Enumeration

§ Various Settings (Distributed, Multi-Core . . .)

§ Complex Graphs (Road Networks, Social Networks . . .)

§ Variations (Label Constrained, Skyline . . .)

§ . . .


