
Path & Reachability (Cont)
COMP9312_22T2

UNSW COMP9312_23T2

Outline
- Reachability
 Transitive closure
 Optimal Tree cover
﻿ Two-Hop labelling

- Shortest Path
 Dijkstra’s algorithm
 A* algorithm
 Floyd-Warshall algorithm

UNSW COMP9312_23T2

Shortest
Distance/Path

UNSW COMP9312_23T2

Shortest path
1. Single-source shortest path problem (finding the shortest paths between a given
vertex v and all other vertices in the graph)
- BFS
- Dijkstra’s algorithm (very similar to Prim’s algorithm; assumes all weights are positive)
- If we only want to find the shortest path to one given goal node, A* algorithm

2. All pair shortest path (find the pairwise shortest distances as well as the corresponding
paths)
- Floyd-Warshall algorithm

4

UNSW COMP9312_23T2

BFS-based shortest path

Find the shortest path from vertex u to v.
A naive BFS-based approach:
(1) conduct a BFS from the source vertex u
(2) for each visited vertex, record its parent in the searching tree
(3) when the target vertex v is visited, terminate BFS.
(4) recursively return the path from u to v.

5

UNSW COMP9312_23T2

Example
Find the shortest path from A to D by performing a breadth-first traversal

Push the first vertex A into the queue:

A

6

UNSW COMP9312_23T2

Example

Pop A and push B, C, E.

B C E

Parents of visited
vertices:
B: A
C: A
E: A

7

UNSW COMP9312_23T2

Example
Pop B and push D into the queue.

Since D is found, terminate BFS! Based on the recorded parent vertices, one shortest
path is A->B->D.

•

C E D

Parents of visited
vertices:
B: A
C: A
D: B
E: A

8

UNSW COMP9312_23T2

BFS-based shortest path
Question:
1. Can we guarantee that this path is the shortest? If so, is it the only shortest path?

2. Time complexity? Space complexity?

3. Can we use the above algorithm to solve the single-source shortest path problem and the

all pairs shortest path problem?

Yes, we can. No, in the above example, A->C->D is another path with
length 2.

The time complexity is O(m) which is the same with BFS. Slightly faster in practice
because of the early termination. The space complexity is O(n) since we need to record
the parent vertex of each visited vertex.

Yes.

9

UNSW COMP9312_23T2

Dijkstra’s
Algorithm

UNSW COMP9312_23T2

Motivation

11

Single-source shortest path problem (finding the shortest paths between a given vertex v and all
other vertices in the graph)

Suppose you are at vertex A
• You are aware of all vertices adjacent to it
• This information is either in an adjacency list or adjacency matrix

Q: Is 5 the shortest distance to B via the edge (A, B)?
Q: Are you guaranteed that the shortest path to C is (A, C), or
that (A, D) is the shortest path to vertex D?

UNSW COMP9312_23T2

Motivation
Let’s see where we can go from B

By some simple arithmetic, we can determine that
• There is a path (A, B, E) of length 5 + 7 = 12
• There is a path (A, B, F) of length 5 + 3 = 8

12

UNSW COMP9312_23T2

Motivation
Is (A, B, F) is the shortest path from vertex A to F?
• Why or why not?

Yes, because 5+3<9, 5+3<15, and 3 is the smallest
weight from B.

13

UNSW COMP9312_23T2

Motivation
Are we guaranteed that any other path we are currently aware of is also
going to be the shortest path?

No.

14

UNSW COMP9312_23T2

Motivation
Okay, let’s visit vertex F
• We know the shortest path is (A, B, F) and it’s of length 8

15

UNSW COMP9312_23T2

Motivation
There are three edges exiting vertex F, so we have paths:
• (A, B, F, E) of length 8 + 6 = 14
• (A, B, F, G) of length 8 + 4 = 12
• (A, B, F, C) of length 8 + 2 = 10

16

UNSW COMP9312_23T2

Motivation
By observation:
• The path (A, B, F, E) is longer than (A, B, E)
• The path (A, B, F, C) is shorter than the path (A, C)

17

UNSW COMP9312_23T2

Motivation
At this point, we’ve discovered the shortest paths to:
• Vertex B: (A, B) of length 5
• Vertex F: (A, B, F) of length 8

18

UNSW COMP9312_23T2

Motivation
At this point, we have the shortest distances to B and F
• Which remaining vertex are we currently guaranteed to have the shortest distance

to?
D. Because D is the unvisited vertex which has the shortest distance right now.

19

UNSW COMP9312_23T2

Dijkstra’s algorithm
• Like Prim’s algorithm, we initially don’t know the distance to any vertex except the

initial vertex. Thus, we require an array of distances, all initialized to infinity
except for the source vertex, which is initialized to 0.

• Each time we visit a vertex, we will examine all adjacent vertices.

We need to track visited vertices—a Boolean table of size |V|

How to track the shortest path to each vertex?

Do I have to store (A, B, F) as the shortest path to vertex F?

We really only have to record that the shortest path to vertex F came from vertex B

We would then determine that the shortest path to vertex B came from vertex A

Thus, we need an array of previous vertices, all initialized to null

20

UNSW COMP9312_23T2

Dijkstra’s algorithm
We will iterate |V| times:

• Find that unvisited vertex v that has a minimum distance to it. Mark
it as having been visited.

• Consider every adjacent vertex w that is unvisited:
- Is the distance to v plus the weight of the edge (v, w) less than our
currently known shortest distance to w. If so, update the shortest
distance to w and record v as the previous pointer.

• Continue iterating until all vertices are visited or all remaining
vertices have a distance to them of infinity.

21

UNSW COMP9312_23T2

Example
Consider the game of Risk from Parker Brothers
• A game of world domination
• The world is divided into 42 connected regions
• The regions are vertices and edges indicate adjacent regions

22

UNSW COMP9312_23T2

Example
We’ll focus on Asia. Here is our abstract representation.
Let us give a weight to each of the edges.
Find the shortest distance from Kamchatka (K) to every other region

ht
tp
://

th
un

de
rb

ird
37

.c
om

/t
ag

/p
ak

er
-b
ro

th
er
s/

23

UNSW COMP9312_23T2

Example
We set up our table as follows.

Vertex Visited Distance Previous
A F ∞ Ø
B F ∞ Ø
C F ∞ Ø
D F ∞ Ø
E F ∞ Ø
F F ∞ Ø
G F ∞ Ø
H F ∞ Ø
I F ∞ Ø
J F ∞ Ø
K F 0 Ø
L F ∞ Ø

24

UNSW COMP9312_23T2

Example
We visit vertex K

Vertex Visited Distance Previous
A F ∞ Ø
B F ∞ Ø
C F ∞ Ø
D F ∞ Ø
E F ∞ Ø
F F ∞ Ø
G F ∞ Ø
H F ∞ Ø
I F ∞ Ø
J F ∞ Ø
K T 0 Ø
L F ∞ Ø

25

UNSW COMP9312_23T2

Example
Vertex K has four neighbors: H, I, J and L

Vertex Visited Distance Previous
A F ∞ Ø
B F ∞ Ø
C F ∞ Ø
D F ∞ Ø
E F ∞ Ø
F F ∞ Ø
G F ∞ Ø
H F ∞ Ø
I F ∞ Ø
J F ∞ Ø
K T 0 Ø
L F ∞ Ø26

UNSW COMP9312_23T2

Example
We have now found at least one path to each of these vertices

Vertex Visited Distance Previous
A F ∞ Ø
B F ∞ Ø
C F ∞ Ø
D F ∞ Ø
E F ∞ Ø
F F ∞ Ø
G F ∞ Ø
H F 8 K
I F 12 K
J F 17 K
K T 0 Ø
L F 16 K27

UNSW COMP9312_23T2

Example
We’re finished with vertex K.
To which vertex are we now guaranteed we have the shortest path?

Vertex Visited Distance Previous
A F ∞ Ø
B F ∞ Ø
C F ∞ Ø
D F ∞ Ø
E F ∞ Ø
F F ∞ Ø
G F ∞ Ø
H F 8 K
I F 12 K
J F 17 K
K T 0 Ø
L F 16 K28

UNSW COMP9312_23T2

Example
We visit vertex H: the shortest path is (K, H) of length 8
Vertex H has four unvisited neighbors: E, G, I, L

Vertex Visited Distance Previous
A F ∞ Ø
B F ∞ Ø
C F ∞ Ø
D F ∞ Ø
E F ∞ Ø
F F ∞ Ø
G F ∞ Ø
H T 8 K
I F 12 K
J F 17 K
K T 0 Ø
L F 16 K29

UNSW COMP9312_23T2

Example
Consider these paths:
• (K, H, E) of length 8 + 6 = 14 (K, H, G) of length 8 + 11 = 19
• (K, H, I) of length 8 + 2 = 10 (K, H, L) of length 8 + 9 = 17

Which of these are
shorter than any
known path?

Vertex Visited Distance Previous
A F ∞ Ø
B F ∞ Ø
C F ∞ Ø
D F ∞ Ø
E F ∞ Ø
F F ∞ Ø
G F ∞ Ø
H T 8 K
I F 12 K
J F 17 K
K T 0 Ø
L F 16 K30

UNSW COMP9312_23T2

Example
We already have a shorter path (K, L), but we update the other three

Vertex Visited Distance Previous
A F ∞ Ø
B F ∞ Ø
C F ∞ Ø
D F ∞ Ø
E F 14 H
F F ∞ Ø
G F 19 H
H T 8 K
I F 10 H
J F 17 K
K T 0 Ø
L F 16 K31

UNSW COMP9312_23T2

Example
We are finished with vertex H.
Which vertex do we visit next?

Vertex Visited Distance Previous
A F ∞ Ø
B F ∞ Ø
C F ∞ Ø
D F ∞ Ø
E F 14 H
F F ∞ Ø
G F 19 H
H T 8 K
I F 10 H
J F 17 K
K T 0 Ø
L F 16 K32

UNSW COMP9312_23T2

Example
The path (K, H, I) is the shortest path from K to I of length 10
Vertex I has two unvisited neighbors: G and J

Vertex Visited Distance Previous
A F ∞ Ø
B F ∞ Ø
C F ∞ Ø
D F ∞ Ø
E F 14 H
F F ∞ Ø
G F 19 H
H T 8 K
I T 10 H
J F 17 K
K T 0 Ø
L F 16 K33

UNSW COMP9312_23T2

Example
Consider these paths:

(K, H, I, G) of length 10 + 3 = 13 (K, H, I, J) of length 10 + 18 = 28

Vertex Visited Distance Previous
A F ∞ Ø
B F ∞ Ø
C F ∞ Ø
D F ∞ Ø
E F 14 H
F F ∞ Ø
G F 19 H
H T 8 K
I T 10 H
J F 17 K
K T 0 Ø
L F 16 K34

UNSW COMP9312_23T2

Example
We have discovered a shorter path to vertex G, but (K, J) is still the shortest
known path to vertex J

Vertex Visited Distance Previous
A F ∞ Ø
B F ∞ Ø
C F ∞ Ø
D F ∞ Ø
E F 14 H
F F ∞ Ø
G F 13 I
H T 8 K
I T 10 H
J F 17 K
K T 0 Ø
L F 16 K35

UNSW COMP9312_23T2

Example
Which vertex can we visit next?

Vertex Visited Distance Previous
A F ∞ Ø
B F ∞ Ø
C F ∞ Ø
D F ∞ Ø
E F 14 H
F F ∞ Ø
G F 13 I
H T 8 K
I T 10 H
J F 17 K
K T 0 Ø
L F 16 K36

UNSW COMP9312_23T2

Example
The path (K, H, I, G) is the shortest path from K to G of length 13.
Vertex G has three unvisited neighbors: E, F and J.

Vertex Visited Distance Previous
A F ∞ Ø
B F ∞ Ø
C F ∞ Ø
D F ∞ Ø
E F 14 H
F F ∞ Ø
G T 13 I
H T 8 K
I T 10 H
J F 17 K
K T 0 Ø
L F 16 K37

UNSW COMP9312_23T2

Example
Consider these paths:
• (K, H, I, G, E) of length 13 + 15 = 28 (K, H, I, G, F) of length 13 + 4 = 17
• (K, H, I, G, J) of length 13 + 19 = 32

• Which do we update? Vertex Visited Distance Previous
A F ∞ Ø
B F ∞ Ø
C F ∞ Ø
D F ∞ Ø
E F 14 H
F F ∞ Ø
G T 13 I
H T 8 K
I T 10 H
J F 17 K
K T 0 Ø
L F 16 K38

UNSW COMP9312_23T2

Example
We have now found a path to vertex F

Vertex Visited Distance Previous
A F ∞ Ø
B F ∞ Ø
C F ∞ Ø
D F ∞ Ø
E F 14 H
F F 17 G
G T 13 I
H T 8 K
I T 10 H
J F 17 K
K T 0 Ø
L F 16 K39

UNSW COMP9312_23T2

Example
Where do we visit next?

Vertex Visited Distance Previous
A F ∞ Ø
B F ∞ Ø
C F ∞ Ø
D F ∞ Ø
E F 14 H
F F 17 G
G T 13 I
H T 8 K
I T 10 H
J F 17 K
K T 0 Ø
L F 16 K40

UNSW COMP9312_23T2

Example
The path (K, H, E) is the shortest path from K to E of length 14.
Vertex E has four unvisited neighbors: B, C, D and F.

Vertex Visited Distance Previous
A F ∞ Ø
B F ∞ Ø
C F ∞ Ø
D F ∞ Ø
E T 14 H
F F 17 G
G T 13 I
H T 8 K
I T 10 H
J F 17 K
K T 0 Ø
L F 16 K41

UNSW COMP9312_23T2

Example
The path (K, H, E) is the shortest path from K to E of length 14
Vertex E has four unvisited neighbors: B, C, D and F

Vertex Visited Distance Previous
A F ∞ Ø
B F ∞ Ø
C F ∞ Ø
D F ∞ Ø
E T 14 H
F F 17 G
G T 13 I
H T 8 K
I T 10 H
J F 17 K
K T 0 Ø
L F 16 K42

UNSW COMP9312_23T2

Example
Consider these paths:
• (K, H, E, B) of length 14 + 5 = 19 (K, H, E, C) of length 14 + 1 = 15
• (K, H, E, D) of length 14 + 10 = 24 (K, H, E, F) of length 14 + 22 = 36

• Which do we update? Vertex Visited Distance Previous
A F ∞ Ø
B F ∞ Ø
C F ∞ Ø
D F ∞ Ø
E T 14 H
F F 17 G
G T 13 I
H T 8 K
I T 10 H
J F 17 K
K T 0 Ø
L F 16 K43

UNSW COMP9312_23T2

Example
We’ve discovered paths to vertices B, C, D

Vertex Visited Distance Previous
A F ∞ Ø
B F 19 E
C F 15 E
D F 24 E
E T 14 H
F F 17 G
G T 13 I
H T 8 K
I T 10 H
J F 17 K
K T 0 Ø
L F 16 K44

UNSW COMP9312_23T2

Example
Which vertex is next?

Vertex Visited Distance Previous
A F ∞ Ø
B F 19 E
C F 15 E
D F 24 E
E T 14 H
F F 17 G
G T 13 I
H T 8 K
I T 10 H
J F 17 K
K T 0 Ø
L F 16 K45

UNSW COMP9312_23T2

Example
We’ve found that the path (K, H, E, C) of length 15 is the shortest
path from K to C.
Vertex C has one unvisited neighbor, B.

Vertex Visited Distance Previous
A F ∞ Ø
B F 19 E
C T 15 E
D F 24 E
E T 14 H
F F 17 G
G T 13 I
H T 8 K
I T 10 H
J F 17 K
K T 0 Ø
L F 16 K46

UNSW COMP9312_23T2

Example
The path (K, H, E, C, B) is of length 15 + 7 = 22.
We have already discovered a shorter path through vertex E.

Vertex Visited Distance Previous
A F ∞ Ø
B F 19 E
C T 15 E
D F 24 E
E T 14 H
F F 17 G
G T 13 I
H T 8 K
I T 10 H
J F 17 K
K T 0 Ø
L F 16 K47

UNSW COMP9312_23T2

Example
Where to next?

Vertex Visited Distance Previous
A F ∞ Ø
B F 19 E
C T 15 E
D F 24 E
E T 14 H
F F 17 G
G T 13 I
H T 8 K
I T 10 H
J F 17 K
K T 0 Ø
L F 16 K48

UNSW COMP9312_23T2

Example
We now know that (K, L) is the shortest path between these
two points.
Vertex L has no unvisited neighbors.

Vertex Visited Distance Previous
A F ∞ Ø
B F 19 E
C T 15 E
D F 24 E
E T 14 H
F F 17 G
G T 13 I
H T 8 K
I T 10 H
J F 17 K
K T 0 Ø
L T 16 K49

UNSW COMP9312_23T2

Example

Where to next?
Does it matter if we visit vertex F first or vertex J first?

Vertex Visited Distance Previous
A F ∞ Ø
B F 19 E
C T 15 E
D F 24 E
E T 14 H
F F 17 G
G T 13 I
H T 8 K
I T 10 H
J F 17 K
K T 0 Ø
L T 16 K50

UNSW COMP9312_23T2

Example
Let’s visit vertex F first.
It has one unvisited neighbor, vertex D

Vertex Visited Distance Previous
A F ∞ Ø
B F 19 E
C T 15 E
D F 24 E
E T 14 H
F T 17 G
G T 13 I
H T 8 K
I T 10 H
J F 17 K
K T 0 Ø
L T 16 K51

UNSW COMP9312_23T2

Example
The path (K, H, I, G, F, D) is of length 17 + 14 = 31.
This is longer than the path we’ve already discovered.

Vertex Visited Distance Previous
A F ∞ Ø
B F 19 E
C T 15 E
D F 24 E
E T 14 H
F T 17 G
G T 13 I
H T 8 K
I T 10 H
J F 17 K
K T 0 Ø
L T 16 K52

UNSW COMP9312_23T2

Example
Now we visit vertex J.
It has no unvisited neighbors

Vertex Visited Distance Previous
A F ∞ Ø
B F 19 E
C T 15 E
D F 24 E
E T 14 H
F T 17 G
G T 13 I
H T 8 K
I T 10 H
J T 17 K
K T 0 Ø
L T 16 K53

UNSW COMP9312_23T2

Example
Next we visit vertex B, which has two unvisited neighbors:
• (K, H, E, B, A) of length 19 + 20 = 39 (K, H, E, B, D) of length 19 + 13 = 32
• We update the path length to A

Vertex Visited Distance Previous
A F 39 B
B T 19 E
C T 15 E
D F 24 E
E T 14 H
F T 17 G
G T 13 I
H T 8 K
I T 10 H
J T 17 K
K T 0 Ø
L T 16 K54

UNSW COMP9312_23T2

Example
Next we visit vertex D
The path (K, H, E, D, A) is of length 24 + 21 = 45
We don’t update A.

Vertex Visited Distance Previous
A F 39 B
B T 19 E
C T 15 E
D T 24 E
E T 14 H
F T 17 G
G T 13 I
H T 8 K
I T 10 H
J T 17 K
K T 0 Ø
L T 16 K55

UNSW COMP9312_23T2

Example
Finally, we visit vertex A.
It has no unvisited neighbors and there are no unvisited vertices left.
We are done.

Vertex Visited Distance Previous
A T 39 B
B T 19 E
C T 15 E
D T 24 E
E T 14 H
F T 17 G
G T 13 I
H T 8 K
I T 10 H
J T 17 K
K T 0 Ø
L T 16 K56

UNSW COMP9312_23T2

Example
Thus, we have found the shortest path from vertex K to each of
the other vertices

Vertex Visited Distance Previous
A T 39 B
B T 19 E
C T 15 E
D T 24 E
E T 14 H
F T 17 G
G T 13 I
H T 8 K
I T 10 H
J T 17 K
K T 0 Ø
L T 16 K57

UNSW COMP9312_23T2

Example
Using the previous pointers, we can reconstruct the paths

Vertex Visited Distance Previous
A T 39 B
B T 19 E
C T 15 E
D T 24 E
E T 14 H
F T 17 G
G T 13 I
H T 8 K
I T 10 H
J T 17 K
K T 0 Ø
L T 16 K58

UNSW COMP9312_23T2

Example
Note that this table defines a rooted parental tree.
The source vertex K is at the root.
The previous pointer is the parent of the vertex in the tree

Vertex Previous
A B
B E
C E
D E
E H
F G
G I
H K
I H
J K
K Ø
L K59

UNSW COMP9312_23T2

Comments on Dijkstra’s algorithm
Questions:

• What if at some point, all unvisited vertices have a distance ∞?
• This means that the graph is unconnected
• We have found the shortest paths to all vertices in the connected subgraph containing

the source vertex

• What if we just want to find the shortest path between vertices vj and vk?
• Apply the same algorithm, but stop when we are visiting vertex vk

• Does the algorithm change if we have a directed graph?
• No

60

UNSW COMP9312_23T2

Implementation and analysis
• The initialization requires O(|V|) memory and run time

We iterate |V| – 1 times, each time finding the unvisited closest vertex
• Iterating through the table requires is O(|V|) time
• Each time we find a vertex, we must check all of its neighbors
• With an adjacency matrix, the run time is O(|V|(|V| + |V|)) = O(|V|2)
• With an adjacency list, the run time is O(|V|2 + |E|) = O(|V|2) as |E| = O(|V|2)

Can we do better?
Recall, we only need the vertex with the shortest distance next. We can use min-heap similar as the
Prim’s algorithm.

61

UNSW COMP9312_23T2

Min-heap-based optimization
a min heap

The initialization requires O(|V|) memory and run time
– The min heap requires O(|V|) memory which contains the shortest distance of all the

vertices from the source vertex
 We iterate |V| times, each time finding the unvisited closest vertex to the source

– Obtain the shortest distance from the min heap O(1), maintain the heap O(log(|V|))
– The work required for this is O(|V| log(|V|))

 Is this all the work that is necessary?
– Recall that for the closest vertex in an iteration, we try to update the distance of all its

neighbors, thus there are O(|E|) updates in total and each update in the heap requires
O(log(|V|)).

– Thus, the work required for this is O(|E| log(|V|))
 Thus, the total run time is O(|V| log(|V|) + |E| log(|V|)) = O(|E| log(|V|))

62

UNSW COMP9312_23T2

3 T

S

B

A

1

C

D E

1

1 1

2√2

2

2
3

Vertex Visited Distance Previous
A F ∞ Ø
B F ∞ Ø
C F ∞ Ø
D F ∞ Ø
E F ∞ Ø
S T 0 Ø
T F ∞ Ø

Quick Exercise
Given the graph below, apply Dijkstra’s Algorithm to find the shortest paths from S.

63

UNSW COMP9312_23T2

3 T

S

B

A

1

C

D E

1

1 1

2√2

2

2
3

Vertex Visited Distance Previous
A F ∞ Ø
B F ∞ Ø
C F ∞ Ø
D F ∞ Ø
E F ∞ Ø
S T 0 Ø
T F ∞ Ø

Quick Exercise

64

UNSW COMP9312_23T2

3 T

S

B

A

1

C

D E

1

1 1

2√2

2

2
3

Vertex Visited Distance Previous
A F ∞ Ø
B F 1 S
C F ∞ Ø
D F 1 S
E F ∞ Ø
S T 0 Ø
T F ∞ Ø

Quick Exercise

65

UNSW COMP9312_23T2

3 T

S

B

A

1

C

D E

1

1 1

2√2

2

2
3

Vertex Visited Distance Previous
A F ∞ Ø
B T 1 S
C F ∞ Ø
D F 1 S
E F ∞ Ø
S T 0 Ø
T F ∞ Ø

Quick Exercise

66

UNSW COMP9312_23T2

3 T

S

B

A

1

C

D E

1

1 1

2√2

2

2
3

Vertex Visited Distance Previous
A F ∞ Ø
B T 1 S
C F ∞ Ø
D F 1 S
E F ∞ Ø
S T 0 Ø
T F ∞ Ø

Quick Exercise

67

UNSW COMP9312_23T2

3 T

S

B

A

1

C

D E

1

1 1

2√2

2

2
3

Vertex Visited Distance Previous
A F 3 B
B T 1 S
C F 2 B
D F 1 S
E F ∞ Ø
S T 0 Ø
T F ∞ Ø

Quick Exercise

68

UNSW COMP9312_23T2

3 T

S

B

A

1

C

D E

1

1 1

2√2

2

2
3

Vertex Visited Distance Previous
A F 3 B
B T 1 S
C F 2 B
D T 1 S
E F ∞ Ø
S T 0 Ø
T F ∞ Ø

Quick Exercise

69

UNSW COMP9312_23T2

3 T

S

B

A

1

C

D E

1

1 1

2√2

2

2
3

Vertex Visited Distance Previous
A F 3 B
B T 1 S
C F 2 B
D T 1 S
E F ∞ Ø
S T 0 Ø
T F ∞ Ø

Quick Exercise

70

UNSW COMP9312_23T2

3 T

S

B

A

1

C

D E

1

1 1

2√2

2

2
3

Vertex Visited Distance Previous
A F 3 B
B T 1 S
C F 2 B
D T 1 S
E F 3 D
S T 0 Ø
T F ∞ Ø

Quick Exercise

71

UNSW COMP9312_23T2

3 T

S

B

A

1

C

D E

1

1 1

2√2

2

2
3

Vertex Visited Distance Previous
A F 3 B
B T 1 S
C T 2 B
D T 1 S
E F 3 D
S T 0 Ø
T F ∞ Ø

Quick Exercise

72

UNSW COMP9312_23T2

3 T

S

B

A

1

C

D E

1

1 1

2√2

2

2
3

Vertex Visited Distance Previous
A F 3 B
B T 1 S
C T 2 B
D T 1 S
E F 3 D
S T 0 Ø
T F ∞ Ø

Quick Exercise

73

UNSW COMP9312_23T2

3 T

S

B

A

1

C

D E

1

1 1

2√2

2

2
3

Vertex Visited Distance Previous
A F 3 B
B T 1 S
C T 2 B
D T 1 S
E F 3 D
S T 0 Ø
T F 2+2√2 C

Quick Exercise

74

UNSW COMP9312_23T2

3 T

S

B

A

1

C

D E

1

1 1

2√2

2

2
3

Vertex Visited Distance Previous
A T 3 B
B T 1 S
C T 2 B
D T 1 S
E F 3 D
S T 0 Ø
T F 2+2√2 C

Quick Exercise

75

UNSW COMP9312_23T2

3 T

S

B

A

1

C

D E

1

1 1

2√2

2

2
3

Vertex Visited Distance Previous
A T 3 B
B T 1 S
C T 2 B
D T 1 S
E F 3 D
S T 0 Ø
T F 2+2√2 C

Quick Exercise

76

UNSW COMP9312_23T2

3 T

S

B

A

1

C

D E

1

1 1

2√2

2

2
3

Vertex Visited Distance Previous
A T 3 B
B T 1 S
C T 2 B
D T 1 S
E T 3 D
S T 0 Ø
T F 2+2√2 C

Quick Exercise

77

UNSW COMP9312_23T2

3 T

S

B

A

1

C

D E

1

1 1

2√2

2

2
3

Vertex Visited Distance Previous
A T 3 B
B T 1 S
C T 2 B
D T 1 S
E T 3 D
S T 0 Ø
T F 2+2√2 C

Quick Exercise

78

UNSW COMP9312_23T2

3 T

S

B

A

1

C

D E

1

1 1

2√2

2

2
3

Vertex Visited Distance Previous
A T 3 B
B T 1 S
C T 2 B
D T 1 S
E T 3 D
S T 0 Ø
T T 2+2√2 C

Quick Exercise

79

UNSW COMP9312_23T2

Summary for Dijkstra’s algorithm
Single source shortest distance/path for weighted graphs
Compute shortest distance/path for a pair of vertices in practice:

Bidirectional search

80

UNSW COMP9312_23T2

A* Search

UNSW COMP9312_23T2

Motivation: Triangle Inequality
Starting from a specific starting node of a graph, if we
aim to find the shortest path to a given goal node.
We can use the A* search which is faster than
Dijkstra’s algorithm, which uses a hypothetical
shortest distance to weight the paths.
The requirement is that the distances satisfy the
triangle inequality, that is, the distance between a and
b is less than the distance from a to c plus the
distance from c to b.
• All Euclidean distances satisfy

the triangle inequality

http://xkcd.com/85/82

UNSW COMP9312_23T2

A quick view of A* search

83

UNSW COMP9312_23T2

Background
Assume we have a heuristic lower bound for the length of a path between
any two vertices.

For instance, for a graph embedded in a plane, the shortest distance is the
Euclidean distance. We can use this to guide our search for a path.

84

UNSW COMP9312_23T2

Idea

Consider this map of Slovenia

85

UNSW COMP9312_23T2

Idea

Suppose we want to go from Kamnik to Bohinj

86

UNSW COMP9312_23T2

Idea
A lower bound for the length of the shortest path to Bohinj is h(Kamnik,
Bohinj) = 53 km

53 km

87

UNSW COMP9312_23T2

Idea
Any actual path must be at least as long as 53 km

53 km

88

UNSW COMP9312_23T2

Idea
Suppose we have a 28 km shortest path from Kamnik to Kranj: d(Kamnik,
Kranj) = 28 km

28 km

89

UNSW COMP9312_23T2

Idea
A lower bound on the shortest distance from Kranj to the destination is now
h(Kranj, Bohinj) = 32 km

28 km

32 km

90

UNSW COMP9312_23T2

Idea

Thus, we weight of the path up to Kranj is
 w(Kranj) = d(Kamnik, Kranj) + h(Kranj, Bohinj) = 60 km

32 km
28 km

91

UNSW COMP9312_23T2

Idea

Any path extending this given path to Bohimj must be at least 60
km

28 km

32 km

92

UNSW COMP9312_23T2

Idea
The value w(Kranj) represents the shortest possible distance from Kamnik to
Bohinj given that we follow the path to Kranj

As with Dijkstra’s algorithm, we must start with the null path starting at
Kamnik:

w(Kamnik) = d(Kamnik, Kamnik) + h(Kamnik, Bohimj)
= 0 km + 53 km

53 km
Bohimj

Kamnik

93

UNSW COMP9312_23T2

Algorithm Description

Suppose we are finding the shortest path from vertex a to a
vertex z

The A* search algorithm initially:
• Marks each vertex as unvisited
• Starts with an array containing only the initial vertex

• The value of any vertex v in the array is the weight w(v) which assumes
we have found the a shortest path to v

94

UNSW COMP9312_23T2

Algorithm Description

The algorithm then iterates:
• Visit the vertex u with the least weight

• Mark the vertex u of the path as visited
• Ignore all visited adjacent vertices v
• For each remaining unvisited adjacent vertex v:

• Determine if w(v) = d(a, u) + d(u, v) + h(v, z) is less than the current weight of v, and if
so, update the path leading to v and its weight

Continue iterating until the destination vertex z is visited

95

UNSW COMP9312_23T2

Comparison with Dijkstra’s Algorithm

This differs from Dijkstra’s algorithm which gives weight only to
the known path

Difference:
• Dijkstra’s algorithm radiates out from the initial vertex
• The A* search algorithm directs its search towards the destination

96

UNSW COMP9312_23T2

Comparison with Dijkstra’s Algorithm

Graphically, we can suggest the behaviour of the two algorithms
as follows:

Suppose we are moving from a to z:

Representative search patterns for Dijkstra’s and the A* search algorithms

z
aa

z

97

UNSW COMP9312_23T2

Optimally Guarantees?

The A* search algorithm will NOT always find the optimal path
with a poor heuristic distance

• Find the shortest path from A to C:
• w(B) = 1 + 5 = 6
• w(C) = 3 + 0 = 3

• Therefore, C is visited next
and as it is the destination, we
are finished

98

UNSW COMP9312_23T2

Admissible Heuristics
This heuristic overestimates the actual distance from B to C.
The Euclidean distance doesn’t suffer this problem:
The path the crow flies is always shorter than the road the wolf runs.

99

UNSW COMP9312_23T2

Admissible Heuristics
Admissible heuristics h:
• Let d(u, v) represent the actual shortest distance from u to v
• A heuristic h(u, v) is admissible if h(u, v) ≤ d(u, v)
• The heuristic is optimistic or a lower bound on the distance

When the heuristic is admissible, then it is guaranteed to return the shortest
path.

Using the Euclidean distance between two points on a map is clearly an
admissible heuristic
• The flight of the crow is shorter than the run of the wolf

100

UNSW COMP9312_23T2

3 T

S

B

A

1

C

D E

2.1

1 2.1

2√2

2

2
3

Quick Exercise
Given the graph, apply A* Algorithm to find the shortest
path from S to T. Use Euclidean distance as the heuristic.

The coordinates of the vertices:
A = (0, 3)
B = (0, 1)
C = (1, 1)
D = (1, 0)
E = (3, 0)
S = (0, 0)
T = (3, 3)

Vertex Visited Distance Heuristic Total Previous
A F ∞ 3 ∞ Ø
B F ∞ √13 ∞ Ø
C F ∞ 2√2 ∞ Ø
D F ∞ √13 ∞ Ø
E F ∞ 3 ∞ Ø
S T 0 3√2 3√2 Ø
T F ∞ 0 ∞ Ø

𝑑 𝑢	, 𝑣 = (𝑢! − 𝑣!)"+ 𝑢# − 𝑢#
"

101

UNSW COMP9312_23T2

3 T

S

B

A

1

C

D E

1

2√2

2

2
3

Quick Exercise

Vertex Visited Distance Heuristic Total Previous
A F ∞ 3 ∞ Ø
B F ∞ √13 ∞ Ø
C F ∞ 2√2 ∞ Ø
D F ∞ √13 ∞ Ø
E F ∞ 3 ∞ Ø
S T 0 3√2 3√2 Ø
T F ∞ 0 ∞ Ø

2.1

2.1

Since S has the minimum weight, we update the distances of its
neighbors B and D.

102

UNSW COMP9312_23T2

3 T

S

B

A

1

C

D E

2.1

1 2.1

2√2

2

2
3

Quick Exercise

Vertex Visited Distance Heuristic Total Previous
A F ∞ 3 ∞ Ø
B F 1 √13 1+√13 S
C F ∞ 2√2 ∞ Ø
D F 1 √13 1+√13 S
E F ∞ 3 ∞ Ø
S T 0 3√2 3√2 Ø
T F ∞ 0 ∞ Ø

The distances of B and D are updated. They now have the smallest weights (total).
Next, we visit B.

103

UNSW COMP9312_23T2

3 T

S

B

A

1

C

D E

2.1

1 2.1

2√2

2

2
3

Quick Exercise

Vertex Visited Distance Heuristic Total Previous
A F ∞ 3 ∞ Ø
B T 1 √13 1+√13 S
C F ∞ 2√2 ∞ Ø
D F 1 √13 1+√13 S
E F ∞ 3 ∞ Ø
S T 0 3√2 3√2 Ø
T F ∞ 0 ∞ Ø

Mark B as visited.
Next, we update the distances of A and C.

104

UNSW COMP9312_23T2

3 T

S

B

A

1

C

D E

2.1

1 2.1

2√2

2

2
3

Quick Exercise

Vertex Visited Distance Heuristic Total Previous
A F 3 3 6 B
B T 1 √13 1+√13 S
C F 3.1 2√2 3.1+2√2 B
D F 1 √13 1+√13 S
E F ∞ 3 ∞ Ø
S T 0 3√2 3√2 Ø
T F ∞ 0 ∞ Ø

After updating the distances and the weights, D has the minimum weight
and will be visited next.

105

UNSW COMP9312_23T2

3 T

S

B

A

1

C

D E

2.1

1 2.1

2√2

2

2
3

Quick Exercise

Vertex Visited Distance Heuristic Total Previous
A F 3 3 6 B
B T 1 √13 1+√13 S
C F 3.1 2√2 3.1+2√2 B
D T 1 √13 1+√13 S
E F ∞ 3 ∞ Ø
S T 0 2√3 2√3 Ø
T F ∞ 0 ∞ Ø

Mark D as visited.

106

UNSW COMP9312_23T2

3 T

S

B

A

1

C

D E

1

2√2

2

2
3

Quick Exercise

Vertex Visited Distance Heuristic Total Previous
A F 3 3 6 B
B T 1 √13 1+√13 S
C F 3.1 2√2 3.1+2√2 B
D T 1 √13 1+√13 S
E F 3 3 6 D
S T 0 3√2 3√2 Ø
T F ∞ 0 ∞ Ø

2.1

2.1

Update the distances of E.

107

UNSW COMP9312_23T2

3 T

S

B

A

1

C

D E

2.1

1 2.1

2√2

2

2
3

Quick Exercise

Vertex Visited Distance Heuristic Total Previous
A F 3 3 6 B
B T 1 √13 1+√13 S
C T 3.1 2√2 3.1+2√2 B
D T 1 √13 1+√13 S
E F 3 3 6 D
S T 0 3√2 3√2 Ø
T F ∞ 0 ∞ Ø

Mark C as visited.
Update the distances of C’s neighbor: T.

108

UNSW COMP9312_23T2

3 T

S

B

A

1

C

D E

2.1

1 2.1

2 2

2

2
3

Quick Exercise

Vertex Visited Distance Heuristic Total Previous
A F 3 3 6 B
B T 1 √13 1+√13 S
C T 3.1 2√2 3.1+2√2 B
D T 1 √13 1+√13 S
E F 3 3 6 D
S T 0 3√2 3√2 Ø
T T 3.1+2√2 0 3.1+2√2 C

Note that in this exercise, the vertices A and E remain unvisited.
This is because they are pruned by the heuristic function.
The weight suggests that vertex C is guaranteed to be a better option to explore.

The target vertex is now found.

109

UNSW COMP9312_23T2

All-pairs
Shortest
Path

UNSW COMP9312_23T2

All-pairs Shortest Path

This topic:
• We will look at the Floyd-Warshall algorithm for:

• Finding all shortest distances (the shortest distance between all pairs
of nodes)

• Finding the paths corresponding to these distances
• We conclude by finding the transitive closure

111

UNSW COMP9312_23T2

Problem
Observation: Any algorithm that finds the shortest path between all pairs
must consider, each pair of vertices; therefore, a lower bound on the
execution would be O(|V|2).

We will look at the Floyd-Warshall algorithm.

112

UNSW COMP9312_23T2

Strategy
First, let’s consider only edges that connect vertices directly:

Here, wi,j is the weight of the edge connecting vertices i and j

In C++, we would define a two-dimensional array

double d[num_vertices][num_vertices];

(0)
, ,

0 If
If there is an edge from to
Otherwise

i j i j

i j
d w i j

=ì
ï= í
ï¥î

113

UNSW COMP9312_23T2

Strategy
Consider this graph of seven vertices

The edges defining the values and are highlighted()0
5,3d

()0
6,7d

114

UNSW COMP9312_23T2

Strategy
Suppose now, we want to see whether or not the path going through
vertex v1 is shorter than a direct edge?
• Is ?

• Is ?

() () ()0 0 0
5,3 5,1 1,3d d d> +
() () ()0 0 0
6,7 6,1 1,7d d d> +

115

UNSW COMP9312_23T2

Strategy

Thus, for each pair of edges, we will define by calculating:
() () () (){ }1 0 0 0
, , ,1 1,min ,i j i j i jd d d d= +

()1
,i jd

116

UNSW COMP9312_23T2

Strategy

Note that and ; thus, we need just run the
algorithm for each pair of vertices:

() ()1 0
1, 1,j jd d= () ()1 0

,1 ,1i id d=

for (int i = 1; i <= n; ++i) {
for (int j = 1; j <= num_n; ++j) {

d[i][j] = min(d[i][j], d[i][1] + d[1][j]);
}

}

117

Optional

UNSW COMP9312_23T2

The General Step
Define as the shortest distance, but only allowing
intermediate visits to vertices v1, v2, …, vk–1
• Suppose we have an algorithm that has found these values for all pairs

118

()1
,
k
i jd
-

Optional

UNSW COMP9312_23T2

The General Step
How could we find ; that is, the shortest path allowing
intermediate visits to vertices v1, v2, …, vk–1 , vk ?

119

()
,
k
i jd

Optional

UNSW COMP9312_23T2

The General Step
With v1, v2, …, vk–1 as intermediates, have assumed we have found
the shortest paths from vi to vj, vi to vk and vk to vj . The only possible
shorter path including vk would be the path from vi to vk continuing
from there to vj

Thus, we calculate

120

() () () (){ }1 1 1
, , , ,min ,k k k k
i j i j i k k jd d d d- - -= +

Optional

UNSW COMP9312_23T2

The General Step
Finding this for all pairs of vertices gives us all shortest paths
from
vi to vj possibly going through vertices v1, v2, …, vk

121

UNSW COMP9312_23T2

The Floyd-Warshall Algorithm
Thus, we have found the Floyd-Warshall algorithm:

double d[num_vertices][num_vertices];

// Initialize the matrix d: Theta(|V|^2)
// ...

// Run Floyd-Warshall
for (int k = 0; k < num_vertices; ++k) {

for (int i = 0; i < num_vertices; ++i) {
for (int j = 0; j < num_vertices; ++j) {

d[i][j] = min(d[i][j], d[i][k] + d[k][j]);
}

}
}

Run time? O(|V|3)
122

UNSW COMP9312_23T2

Example
Consider this graph

The adjacency matrix is

This would define our matrix D = (dij)

0 0.100 0.101 0.142 0.277
0.465 0 0.191 0.192 0.587
0.245 0.554 0 0.333 0.931
1.032 0.668 0.656 0 0.151
0.867 0.119 0.352 0.398 0

æ ö
ç ÷
ç ÷
ç ÷
ç ÷
ç ÷
ç ÷
è ø

123

UNSW COMP9312_23T2

Example
With the first pass, k = 1, we attempt passing through vertex v1

We would start:
(2, 3) → (2, 1, 3)
0.191 ≯ 0.465 + 0.101

0 0.100 0.101 0.142 0.277
0.465 0 0.191 0.192 0.587
0.245 0.554 0 0.333 0.931
1.032 0.668 0.656 0 0.151
0.867 0.119 0.352 0.398 0

æ ö
ç ÷
ç ÷
ç ÷
ç ÷
ç ÷
ç ÷
è ø

124

UNSW COMP9312_23T2

Example
With the first pass, k = 1, we attempt passing through vertex v1

We would start:
(2, 4) → (2, 1, 4)
0.192 ≯ 0.465 + 0.142

0 0.100 0.101 0.142 0.277
0.465 0 0.191 0.192 0.587
0.245 0.554 0 0.333 0.931
1.032 0.668 0.656 0 0.151
0.867 0.119 0.352 0.398 0

æ ö
ç ÷
ç ÷
ç ÷
ç ÷
ç ÷
ç ÷
è ø

125

UNSW COMP9312_23T2

Example
With the first pass, k = 1, we attempt passing through vertex v1

We would start:
(2, 5) → (2, 1, 5)

0.587 ≯ 0.465 + 0.277

0 0.100 0.101 0.142 0.277
0.465 0 0.191 0.192 0.587
0.245 0.554 0 0.333 0.931
1.032 0.668 0.656 0 0.151
0.867 0.119 0.352 0.398 0

æ ö
ç ÷
ç ÷
ç ÷
ç ÷
ç ÷
ç ÷
è ø

126

UNSW COMP9312_23T2

Example
With the first pass, k = 1, we attempt passing through vertex v1

Here is a shorter path:
(3, 2) → (3, 1, 2)
0.554 > 0.245 + 0.100 = 0.345

0 0.100 0.101 0.142 0.277
0.465 0 0.191 0.192 0.587
0.245 0.554 0 0.333 0.931
1.032 0.668 0.656 0 0.151
0.867 0.119 0.352 0.398 0

æ ö
ç ÷
ç ÷
ç ÷
ç ÷
ç ÷
ç ÷
è ø

127

UNSW COMP9312_23T2

Example
With the first pass, k = 1, we attempt passing through vertex v1

We update the table
(3, 2) → (3, 1, 2)
0.554 > 0.245 + 0.100 = 0.345

0 0.100 0.101 0.142 0.277
0.465 0 0.191 0.192 0.587
0.245 0.345 0 0.333 0.931
1.032 0.668 0.656 0 0.151
0.867 0.119 0.352 0.398 0

æ ö
ç ÷
ç ÷
ç ÷
ç ÷
ç ÷
ç ÷
è ø

128

UNSW COMP9312_23T2

Example
With the first pass, k = 1, we attempt passing through vertex v1

And a second shorter path:
(3, 5) → (3, 1, 5)
0.931 > 0.245 + 0.277 = 0.522

0 0.100 0.101 0.142 0.277
0.465 0 0.191 0.192 0.587
0.245 0.345 0 0.333 0.931
1.032 0.668 0.656 0 0.151
0.867 0.119 0.352 0.398 0

æ ö
ç ÷
ç ÷
ç ÷
ç ÷
ç ÷
ç ÷
è ø

129

UNSW COMP9312_23T2

Example
With the first pass, k = 1, we attempt passing through vertex v1

We update the table

0 0.100 0.101 0.142 0.277
0.465 0 0.191 0.192 0.587
0.245 0.345 0 0.333 0.522
1.032 0.668 0.656 0 0.151
0.867 0.119 0.352 0.398 0

æ ö
ç ÷
ç ÷
ç ÷
ç ÷
ç ÷
ç ÷
è ø

130

UNSW COMP9312_23T2

Example
With the first pass, k = 1, we attempt passing through vertex v1

Continuing:
(4, 2) → (4, 1, 2)

0.668 ≯ 1.032 + 0.100

In fact, no other shorter paths
through vertex v1 exist

0 0.100 0.101 0.142 0.277
0.465 0 0.191 0.192 0.587
0.245 0.554 0 0.333 0.931
1.032 0.668 0.656 0 0.151
0.867 0.119 0.352 0.398 0

æ ö
ç ÷
ç ÷
ç ÷
ç ÷
ç ÷
ç ÷
è ø

131

UNSW COMP9312_23T2

Example
With the next pass, k = 2, we attempt passing through vertex v2

There are three shorter paths:
(5, 1) → (5, 2, 1)

0.867 > 0.119 + 0.465 = 0.584
(5, 3) → (5, 2, 3)

0.352 > 0.119 + 0.191 = 0.310

(5, 4) → (5, 2, 4)
0.398 > 0.119 + 0.192 = 0.311

0 0.100 0.101 0.142 0.277
0.465 0 0.191 0.192 0.587
0.245 0.345 0 0.333 0.522
1.032 0.668 0.656 0 0.151
0.867 0.119 0.352 0.398 0

æ ö
ç ÷
ç ÷
ç ÷
ç ÷
ç ÷
ç ÷
è ø

132

UNSW COMP9312_23T2

Example
With the next pass, k = 2, we attempt passing through vertex v2

We update the table

0 0.100 0.101 0.142 0.277
0.465 0 0.191 0.192 0.587
0.245 0.345 0 0.333 0.522
1.032 0.668 0.656 0 0.151
0.584 0.119 0.310 0.311 0

æ ö
ç ÷
ç ÷
ç ÷
ç ÷
ç ÷
ç ÷
è ø

133

UNSW COMP9312_23T2

Example
With the next pass, k = 3, we attempt passing through vertex v3

There are three shorter paths:
(2, 1) → (2, 3, 1)

0.465 > 0.191 + 0.245 = 0.436
(4, 1) → (4, 3, 1)

1.032 > 0.656 + 0.245 = 0.901

(5, 1) → (5, 3, 1)
0.584 > 0.310 + 0.245 = 0.555

0 0.100 0.101 0.142 0.277
0.465 0 0.191 0.192 0.587
0.245 0.345 0 0.333 0.522
1.032 0.668 0.656 0 0.151
0.584 0.119 0.310 0.311 0

æ ö
ç ÷
ç ÷
ç ÷
ç ÷
ç ÷
ç ÷
è ø

134

UNSW COMP9312_23T2

Example
With the next pass, k = 3, we attempt passing through vertex v3

We update the table

0 0.100 0.101 0.142 0.277
0.436 0 0.191 0.192 0.587
0.245 0.345 0 0.333 0.522
0.901 0.668 0.656 0 0.151
0.555 0.119 0.310 0.311 0

æ ö
ç ÷
ç ÷
ç ÷
ç ÷
ç ÷
ç ÷
è ø

135

UNSW COMP9312_23T2

0 0.100 0.101 0.142 0.277
0.436 0 0.191 0.192 0.587
0.245 0.345 0 0.333 0.522
0.901 0.668 0.656 0 0.151
0.555 0.119 0.310 0.311 0

æ ö
ç ÷
ç ÷
ç ÷
ç ÷
ç ÷
ç ÷
è ø

Example
With the next pass, k = 4, we attempt passing through vertex v4

There are two shorter paths:
(2, 5) → (2, 4, 5)

0.587 > 0.192 + 0.151
(3, 5) → (3, 4, 5)

0.522 > 0.333 + 0.151

136

UNSW COMP9312_23T2

0 0.100 0.101 0.142 0.277
0.436 0 0.191 0.192 0.343
0.245 0.345 0 0.333 0.484
0.901 0.668 0.656 0 0.151
0.555 0.119 0.310 0.311 0

æ ö
ç ÷
ç ÷
ç ÷
ç ÷
ç ÷
ç ÷
è ø

Example
With the next pass, k = 4, we attempt passing through vertex v4

We update the table

137

UNSW COMP9312_23T2

0 0.100 0.101 0.142 0.277
0.436 0 0.191 0.192 0.343
0.245 0.345 0 0.333 0.484
0.901 0.668 0.656 0 0.151
0.555 0.119 0.310 0.311 0

æ ö
ç ÷
ç ÷
ç ÷
ç ÷
ç ÷
ç ÷
è ø

Example
With the last pass, k = 5, we attempt passing through vertex v5

There are three shorter paths:
(4, 1) → (4, 5, 1)

0.901 > 0.151 + 0.555 = 0.706
(4, 2) → (4, 5, 2)

0.668 > 0.151 + 0.119 = 0.270
(4, 3) → (4, 5, 3)

0.656 > 0.151 + 0.310 = 0.461
138

UNSW COMP9312_23T2

0 0.100 0.101 0.142 0.277
0.436 0 0.191 0.192 0.343
0.245 0.345 0 0.333 0.484
0.706 0.270 0.461 0 0.151
0.555 0.119 0.310 0.311 0

æ ö
ç ÷
ç ÷
ç ÷
ç ÷
ç ÷
ç ÷
è ø

Example
With the last pass, k = 5, we attempt passing through vertex v5

We update the table

139

UNSW COMP9312_23T2

Example
Thus, we have a table of all shortest paths:

0 0.100 0.101 0.142 0.277
0.436 0 0.191 0.192 0.343
0.245 0.345 0 0.333 0.484
0.706 0.270 0.461 0 0.151
0.555 0.119 0.310 0.311 0

æ ö
ç ÷
ç ÷
ç ÷
ç ÷
ç ÷
ç ÷
è ø

140

UNSW COMP9312_23T2

What about the Shortest Path?
This algorithm finds the shortest distances, but what are the paths
corresponding to those shortest distances?

Recall that with Dijkstra’s algorithm, we could find the shortest paths by
recording the previous node.

You would start at the end and work your way back… (AKA. Back-
tracking)

141

UNSW COMP9312_23T2

What about the Shortest Path?
Suppose the shortest path from vi to vj is as follows:

142

UNSW COMP9312_23T2

What about the Shortest Path?
Is this path consists of (vi, v5) and the shortest path from v5 to vj?

If there was a shorter path from vi to vj through v5 that didn’t follow v2, v13, etc., then we
would also find a shorter path from v5 to vj

143

UNSW COMP9312_23T2

What about the Shortest Path?
Now, suppose we have the shortest path from vi to vj which passes
through the vertices v1, v2, …, vk–1
• In this example, the next vertex in the path is v5

144

UNSW COMP9312_23T2

What about the Shortest Path?
What if we find a shorter path passing through vk?
• In this example, all we’d have to do is now remember that the new path has v4 as the

second node—the rest of the path would be recursively stored as the shortest path
from v4 to vj

145

UNSW COMP9312_23T2

What about the Shortest Path?
In this case, let us store the shortest path moving forward.

Pij stores the next vertex in the shortest path between i and j.

Initialize:

Now, if we find a shorter path, update the value
• This matrix will store the next vertex in the list in the shortest path starting at vertex vi

,

If
If there is an edge from to
Otherwise

i j

i j
p j i j

Æ =ì
ï= í
ïÆî

146

UNSW COMP9312_23T2

What about the Shortest Path?
Thus, if we ever find a shorter path, update it the next node:

unsigned int p[num_vertices][num_vertices];

// Initialize the matrix p: O(|V|^2)
// ...

// Run Floyd-Warshall
for (int k = 0; k < num_vertices; ++k) {

for (int i = 0; i < num_vertices; ++i) {
for (int j = 0; j < num_vertices; ++j) {

if (d[i][j] > d[i][k] + d[k][j]) {
p[i][j] = p[i][k];
d[i][j] = d[i][k] + d[k][j];

}
}

}
}

, ,i j i kp p=

147

UNSW COMP9312_23T2

Example
In our original example, initially, the next node is exactly that:

This would define our
matrix P = (pij)

2 3 4 5
1 3 4 5
1 2 4 5
1 2 3 5
1 2 3 4

-æ ö
ç ÷-ç ÷
ç ÷-
ç ÷

-ç ÷
ç ÷-è ø

148

UNSW COMP9312_23T2

2 3 4 5
1 3 4 5
1 2 4 5
1 2 3 5
1 2 3 4

-æ ö
ç ÷-ç ÷
ç ÷-
ç ÷

-ç ÷
ç ÷-è ø

Example
With the first pass, k = 1, we attempt passing through vertex v1

There are two shorter paths:
(3, 2) → (3, 1, 2)

0.554 > 0.245 + 0.100
(3, 5) → (3, 1, 5)

0.931 > 0.245 + 0.277

149

UNSW COMP9312_23T2

2 3 4 5
1 3 4 5
1 1 4 1
1 2 3 5
1 2 3 4

-æ ö
ç ÷-ç ÷
ç ÷-
ç ÷

-ç ÷
ç ÷-è ø

Example
With the first pass, k = 1, we attempt passing through vertex v1

We update each of these

150

UNSW COMP9312_23T2

Example
After all the steps, we end up with the matrix P = (pi,j):

2 3 4 5
3 3 4 4
1 1 4 4
5 5 5 5
2 2 2 2

-æ ö
ç ÷-ç ÷
ç ÷-
ç ÷

-ç ÷
ç ÷-è ø

151

UNSW COMP9312_23T2

2 3 4 5
3 3 4 4
1 1 4 4
5 5 5 5
2 2 2 2

-æ ö
ç ÷-ç ÷
ç ÷-
ç ÷

-ç ÷
ç ÷-è ø

Example
These are all the adjacent edges that are still the shortest distance

For each of these, pi,j = j

152

UNSW COMP9312_23T2

Example
From vertex v2, p2,3 = 3 and p2,4 = 4; we go directly to vertices v3 and v4

But p2,1 = 3 and p3,1 = 1;
the shortest path to v1 is (2, 3, 1)
Also, p2,5 = 4 and p4,5 = 5;
the shortest path to v5 is (2, 4, 5)

2 3 4 5
3 3 4 4
1 1 4 4
5 5 5 5
2 2 2 2

-æ ö
ç ÷-ç ÷
ç ÷-
ç ÷

-ç ÷
ç ÷-è ø

153

UNSW COMP9312_23T2

Example
From vertex v3, p3,1 = 1 and p3,4 = 4; we go directly to vertices v1 and v4

But p3,2 = 1 and p1,2 = 2;

the shortest path to v2 is (3, 1, 2)

Also, p3,5 = 4 and p4,5 = 5;

the shortest path to v5 is (3, 4, 5)

2 3 4 5
3 3 4 4
1 1 4 4
5 5 5 5
2 2 2 2

-æ ö
ç ÷-ç ÷
ç ÷-
ç ÷

-ç ÷
ç ÷-è ø

154

UNSW COMP9312_23T2

Example
From vertex v4, p4,5 = 5; we go directly to vertex v5

But p4,1 = 5, p5,1 = 2, p2,1 = 3, p3,1 = 1;
the shortest path to v1 is (4, 5, 2, 3, 1)

2 3 4 5
3 3 4 4
1 1 4 4
5 5 5 5
2 2 2 2

-æ ö
ç ÷-ç ÷
ç ÷-
ç ÷

-ç ÷
ç ÷-è ø

155

UNSW COMP9312_23T2

Example
From vertex v5, p5,2 = 2; we go directly to vertex v2

But p5,4 = 2 and p2,4 = 4;
the shortest path to v4 is (5, 2, 4)

2 3 4 5
3 3 4 4
1 1 4 4
5 5 5 5
2 2 2 2

-æ ö
ç ÷-ç ÷
ç ÷-
ç ÷

-ç ÷
ç ÷-è ø

156

UNSW COMP9312_23T2

Learning Outcome

- Understand the Dijkstra’s algorithm, A* algorithm, and Floyd-Warshall algorithm.

- Know how to use these algorithms to solve the shortest-path problems.

157

UNSW COMP9312_23T2

Index-based
shortest
distance

Optional

UNSW COMP9312_23T2

Drawbacks of online method

159

Drawbacks of online search methods (Dijkstra, A*…)

§ Takes much time if distance is long.

§ Explores too much unnecessary vertices.

Optional

UNSW COMP9312_23T2

Index-based shortest distance

160

Further improve the query efficiency by precomputing small structure to maintain

distances.

- Landmark-based global summary structure.

- Tree traversal.

https://dl.acm.org/doi/10.1145/2463676.2465315
https://dl.acm.org/doi/10.1145/3183713.3196913

https://dl.acm.org/doi/10.1145/2463676.2465315
https://dl.acm.org/doi/10.1145/3183713.3196913

Optional

UNSW COMP9312_23T2

What researchers are doing…

161

§ Different Index Structure (Maintenance for dynamic updates)

§ Shortest Distance vs Shortest Path

§ Shortest Path Counting & Enumeration

§ Various Settings (Distributed, Multi-Core . . .)

§ Complex Graphs (Road Networks, Social Networks . . .)

§ Variations (Label Constrained, Skyline . . .)

§ . . .

