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 Dijkstra’s algorithm
 A* algorithm
 Floyd-Warshall algorithm

UNSW COMP9312_23T2



Reachability
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Problem formulation
Given an unweighted directed graph G and two nodes u and v, is  there a 
path connecting u to v (denoted u↝v)?

0↝5? YES
0↝2? NO

0

1

23

4

5

Directed Graph à DAG (directed acyclic graph) by
coalescing the strongly connected components
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Motivation
• Classical problem in graph theory.

• Studying the influence flow in social networks.
– Even undirected graphs (facebook) are converted to  directed w.r.t a certain 
attribute distribution

• Security: finding possible connections between suspects.

• Biological data: is that protein involved directly  or indirectly in the 
expression of a gene?

• Primitive for many graph related problems  (pattern matching).
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An Online Approach

Whether or not u↝v
• Conduct DFS or BFS starting from u
• if the node v is discovered:

• then stop search, report YES
• If the stack/queue is empty: 

• then report NO

No index and thus no  
construction overhead  
and no extra space  
consumption

TOO GOOD TOO BAD

Query time: O(m+n) 
the  entire graph will be  
traversed in the worst  
case
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1. Transitive closure

Run the Floyd-Warshall algorithm and store all possible query 
results in a matrix. 

2. Tree cover (DAG)

Use spanning trees to store the reachability information that is 
originally stored in transitive closure in hierarchy. 

3. 2-hop labeling
       

For each node in the graph, assign two label sets for it to store the 
reachability information that is originally stored in transitive 
closure. 

Index-based methods
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D C

A

B

F
G

E

E

C

A

B

G

F

D

Most index-based reachability methods assume the directed graph is a DAG 
(directed acyclic graph), which can be derived by contracted all SCCs 
(strongly connected components).

SCC

SCC

SCC

Index-based methods for directed graph
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Transitive 
Closure
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Transitive Closure (TC)
A transitive closure is a Boolean matrix storing the answers of all
possible reachability queries. The size of the matrix is 𝑂(𝑛!), 
where 𝑛 denotes the number of vertices in the graph.

0

1

23

4

5

The original graph G

0 1 2 3 4 5

0 1 1 0 1 1 1

1 0 1 0 0 1 1

2 0 1 1 0 1 1
3 0 1 0 1 1 1

4 0 0 0 0 1 1

5 0 0 0 0 0 1

The transitive closure of G
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Transitive Closure (TC)

The transitive closure is a Boolean matrix:
bool tc[num_vertices][num_vertices];

// Initialize the matrix tc:  O(n^2)
tc[i][j] = 1 if there is an edge from i to j, or i == j;

// Run Floyd-Warshall
for ( int k = 0; k < num_vertices; ++k ) {

for ( int i = 0; i < num_vertices; ++i ) {
for ( int j = 0; j < num_vertices; ++j ) {

tc[i][j] = tc[i][j] || (tc[i][k] && tc[k][j]);
}

}
}

The Floyd-Warshall algorithm will be covered in Topic 2.2 (Shortest Path)
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Transitive Closure (TC)

// Run Floyd-Warshall
for ( int k = 0; k < num_vertices; ++k ) {

for ( int i = 0; i < num_vertices; ++i ) {
for ( int j = 0; j < num_vertices; ++j ) {

tc[i][j] = tc[i][j] || (tc[i][k] && tc[k][j]);
}

}
}

After the iteration k, we find the 
reachability pairs (i,j) where the 
reachability path is formed by 
{v_0,v_1,…,v_k}
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Transitive Closure (TC)
0 1 2 3 4 5

0 1 1 0 1 1 1

1 0 1 0 0 1 1

2 0 1 1 0 1 1
3 0 1 0 1 1 1

4 0 0 0 0 1 1

5 0 0 0 0 0 1

0

1

23

4

5

TC(G): each 
edge indicates 
the reachability 
information.
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• It can be done by dynamic  
programming algorithm Floyd–  
Warshall in O(𝑛3)

• It takes 𝑂(𝑛2) space
TOO BAD

• BUT, queries can be  
answered in constant  
time 𝑂(1)

TOO GOOD

0 1 2 3 4 5

0 1 1 0 1 1 1

1 0 1 0 0 1 1

2 0 1 1 0 1 1
3 0 1 0 1 1 1

4 0 0 0 0 1 1

5 0 0 0 0 0 1

0

1

23

4

5

TC(G): each 
edge indicates 
the reachability 
information.

Transitive Closure (TC)
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Tree Cover
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Reachability in a Tree

What if the DAG we are dealing with is just a tree?
a

c
e

d

h

f

g

b

A tree 𝑇
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Reachability in a Tree

What if the DAG we are dealing with is just a tree?
a

c
e

d

h

f

g

b

A tree 𝑇
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Main idea:
For each node in the tree, we assign a label to
indicate the nodes reachable.

Implementation:
1. Conduct a post-order traversal on the tree and

record the post-order number.

2. For each node, record the minimum post-order
number of its descendants.



Reachability in a Tree
Pseudo code for post-order-traversal

post-order-traversal(root):
﻿ for each v of root’s children from left to right:
﻿  // traverse the subtree rooted at v
﻿  post-order-traversal(v)
﻿ visit root

We use p(u) to denote the post-order number of u.

An example is shown on the right.

a

c
e

d

h

f

g

b

1 2

3

4

5

7

6

8

Postorder: left – right -root
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Reachability in a Tree
For each vertex, we compute the minimum post-order number of its subtree.

For each vertex u, we construct an interval [p(v’), p(u)] as its label, where v’ is
the descendant of u with the smallest post-order number.

What do you observe?

a

c
e

d

h

f

g

b

[1,1] [2,2]

[1,3]

[1,4]

[5,5]

[6,7]

[6,6]

[1,8]

Query Processing: ?(u↝v) ⟹
?(𝑢𝑠𝑡𝑎𝑟𝑡 ≤ 𝑣𝑒𝑛𝑑 < 𝑢𝑒𝑛𝑑)
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Assign the post-order numbers for this tree:

Quick Exercise

A

𝐶 𝐷

𝐼

𝐵

𝐺 𝐻

𝐿

𝐸

𝐽

𝐹

𝐾
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ANSWER: the post-order numbers for this tree:

Quick Exercise

A

𝐶 𝐷

𝐼

𝐵

𝐺 𝐻

𝐿

𝐸

𝐽

𝐹

𝐾1

2

3

4

5

97

86 10

11

12
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Tree Cover
How to generalize the above steps to any
DAG ?

Main idea:
1. Consider a spanning tree (tree cover) of
the DAG.
2. Go through the above steps for the tree.
3. Recover the non-tree edges and use
them to pass on the reachability
information.

We assume the DAG 𝐺 has only one 
connected component. 
If 𝐺	contains multiple connected 
components, we connect them to a virtual 
root node. 

a

c
e

d

h

f

g

b

A general DAG 𝐺
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The tree T we considered is also a spanning tree of the given
DAG G. Thus, step one and step two are already completed.

Now we need to restore the non-tree edges:

Topological sort the vertices.
For each vertex q in reverse topological order:
 for each edge (p,q) add the intervals of q to the
intervals of p.

Note:
(1) need to consider both tree- and non-tree edges
(2) remove the subsumed intervals

Tree Cover

a

c
e

d

h

f

g

b

[1,1] [2,2]

[1,3]

[1,4]

[5,5]

[6,7]

[6,6]

[1,8]
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A topological ordering of the vertices:
 a, d, b, c, f, e, g, h

First consider vertex h, which has incoming edges
(d, h), (c, h), and (e, h).

Considering (e, h), no need to change the interval of e.

Add edge (d, h):
We add the interval associated with h to d.

Tree Cover

a

c
e

d

h

f

g

b

[1,1] [2,2]

[1,3]

[1,4]

[5,5]

[6,7]

[6,6]

[1,8]

[2,2]
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Tree Cover

Add edge (c, h):
We add the interval associated with h to c. a

c
e

d

h

f

g

b

[1,1] [2,2]

[1,3]

[1,4]

[5,5]

[6,7]

[6,6]

[1,8]

[2,2]

[2,2]
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The next vertex to consider is g.
Among its incoming edges (d, g), (a, g), and (e, g), we
consider (d, g), and (a, g) because (e, g) does not 
change the interval of e.

Add edge (d, g):
We add the interval [1,1] to d.

Tree Cover

a

c
e

d

h

f

g

b

[1,1] [2,2]

[1,3]

[1,4]

[5,5]

[6,7]

[6,6]

[1,8]

[2,2]

[2,2]

[1,1]
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The next vertex to consider is g.
(e, g) does not change the interval of e. We consider
(d, g), and (a, g):

Add edge (a, g):
We DO NOT add the interval [1,1] to a.
This is because [1,1] is contained by [1,8].

Tree Cover

a

c
e

d

h

f

g

b

[1,1] [2,2]

[1,3]

[1,4]

[5,5]

[6,7]

[6,6]

[1,8]

[2,2]

[2,2]

[1,1]
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Tree Cover

a

c
e

d

h

f

g

b

[1,1] [2,2]

[1,3]

[1,4]

[5,5]

[6,7]

[6,6]

[1,8]The next vertex to consider is e.
(b, e) does not change the interval of b. We 
consider the edge: (d, e)

Add edge (d, e):
We add the interval [1,3] to d.
Since [1,1] and [2,2] are contained by [1,3],
we only keep [1 ,3]

[2,2]

[1,3]
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Tree Cover

a

c
e

d

h

f

g

b

[1,1] [2,2]

[1,3]

[1,4]

[5,5]

[6,7]

[6,6]

[1,8]The next vertex to consider is f.
(d, f) does not change the interval of d.

The next vertex to consider is c.
(a, c) does not change the interval of a.

The next vertex to consider is b.
(a, b) does not change the interval of a.
Its incoming non-tree edge: (d, b).

Add edge (d, b):
We add the interval [1,4] to d. Since [1,3] is
contained by [1,4], we keep [1, 4].

[2,2]

[1,4]
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Tree Cover

a

c
e

d

h

f

g

b

[1,1] [2,2]

[1,3]

[1,4]

[5,5]

[6,7]

[6,6]

[1,8]
The next vertex to consider is d.
(a, d) does not change the interval of a.

The next vertex to consider is a.
It does not have any incoming edges.

Done.

Question:
how many intervals are used in this
compression scheme? [2,2]

[1,4]

A compression scheme for  𝐺
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Tree Cover

a

c
e

d

h

f

g

b

[1,1] [2,2]

[1,3]

[1,4]

[5,5]

[6,7]

[6,6]

[1,8]What if there is one more edge from h->g?

1. It will change the topological order (process 
g first then h)

2. Add the interval of g to h

3. When processing the incoming-edges of h, 
remember to update the new intervals!

How about h->f? [2,2]

[1,4]

A compression scheme for  𝐺[1,1]

[1,1]
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Optimal Tree Cover
a

g h

cd

fb

e

Question:
are all spanning trees (tree covers) equally
good?

Optimality:
the tree cover with the minimum number of
intervals in the resulting compression scheme.

An optimal tree cover is shown here. 
Construct the associated compression 
scheme. 

An optimal tree cover
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Step 1: 
Assign post-order number: 

Optimal Tree Cover
a

g h

cd

fb

e

1 2

3

4

6

5

7

8
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Optimal Tree Cover

[1,1]

a

g h

cd

fb

e

[2,2]

[1,3]

[1,4]

[1,6]

[5,5]

[1,8]

[7,7]
Step 2: 
For each vertex, we compute the
minimum post-order number of its
subtree and assign an interval as 
the reachability label. 
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Optimal Tree Cover

[1,1]

a

g h

cd

fb

e

[2,2]

[1,3]

[1,4]

[1,6]

[5,5]

[1,8]

[7,7]

Follow reverse topological order 
and recover the non-tree edges. 

A topological ordering of the vertices:
 a, d, b, c, f, e, g, h

First consider vertex h, which has
incoming non-tree edges
(d, h), (c, h) and tree edge (e, h). 

(e, h) does not change the interval of e.

Add edge (d, h):
We add the interval associated with h
to d.
[2 ,2] is subsumed by [1, 6]. 
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Optimal Tree Cover

[1,1]

a

g h

cd

fb

e

[2,2]

[1,3]

[1,4]

[1,6]

[5,5]

[2,2]

[1,8]

[7,7]
Add edge (c, h):
We add the interval associated with
h to c.

36 UNSW COMP9312_23T2



Optimal Tree Cover

[1,1]

a

g h

cd

fb

e

[2,2]

[1,3]

[1,4]

[1,6]

[5,5]

[2,2]

[1,8]

[7,7]

The next vertex to consider is g.
We consider (d, g), and (a, g):

(e, g) does not change the interval of e.

Add edge (d, g):
We DO NOT add the interval [1,1] to d 
because it is subsumed by [1 ,6]. 
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Optimal Tree Cover

[1,1]

a

g h

cd

fb

e

[2,2]

[1,3]

[1,4]

[1,6]

[5,5]

[2,2]

[1,8]

[7,7]
Add edge (a, g):
We DO NOT add the interval [1,1] to
a because it is subsumed by [1 ,8]. 
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Optimal Tree Cover

[1,1]

a

g h

cd

fb

e

[2,2]

[1,3]

[1,4]

[1,6]

[5,5]

[2,2]

[1,8]

[7,7]

The next vertex to consider is e.
We consider (b, e) and (d, e):

(b, e) does not change the interval of 
b.

Add edge (d, e):
We DO NOT add the interval [1, 3] to
d because it is subsumed by [1, 6]. 
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Optimal Tree Cover

[1,1]

a

g h

cd

fb

e

[2,2]

[1,3]

[1,4]

[1,6]

[5,5]

[2,2]

[1,8]

[7,7]

The vertices f, c, and d do not have 
any incoming edges that can make 
any changes. 

The next vertex to consider is b, which 
has one incoming non-tree edge (a, b) 
and tree-edge (d, b).

(d, b) does not change the interval of d.

Add edge (a, b):
We DO NOT add the interval [1, 4] to a 
because it is subsumed by [1, 8]. 
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Optimal Tree Cover

[1,1]

a

g h

cd

fb

e

[2,2]

[1,3]

[1,4]

[1,6]

[5,5]

[2,2]

[1,8]

[7,7]

Question:
how many intervals are used in
this compression scheme?

Question:
Compared to the previous 
compression scheme, what do 
you observe? 
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Computing Optimal Tree Cover

[1,1]

a

g h

cd

fb

e

[2,2]

[1,3]

[1,4]

[1,6]

[5,5]

[2,2]

[1,8]

[7,7]
Intuition: Make the tree like a 
path (unbalanced)

How to compute optimal tree 
cover is optional.

https://dl.acm.org/doi/pdf/10.1145/66926.66950
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Optimal Tree is not optimal?

a

c
e

d

h

f

g

b

[1,1] [2,2]

[1,3]

[1,4]

[5,5]

[6,7]

[6,6]

[1,8]

[2,2]

[1,4]

A compression scheme for  𝐺[1,1]

[1,1]

[2,2]
[1,1]

Practical Optimization:

[1,2]

The number of intervals in the 
optimal tree cover may not be the 
smallest when merging intervals 
are allowed.

Do not need to merge intervals in 
assignment/exam.
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Complexity analysis
Query time: 𝑂(𝑛)
Each vertex 𝑢	has at most 𝑛 intervals. Iterate through them and check if 𝑣 is 
contained by one of them. 

Index construction time: 𝑂(𝑛×𝑚)
The dominating cost: for each non-tree edge (𝑢, 𝑣), attach the intervals of v to u, 
which takes 𝑂(𝑛) time. The number of non-tree edges is bounded by 𝑂(𝑚). Thus, 
the time complexity to build a compression scheme is 𝑂(𝑛×𝑚)

Space complexity: 𝑂(𝑛!)
In the worst case, the space complexity of a tree cover is the same as the 
transitive closure, but in practice its storage cost is much smaller. 
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Tree Cover results

45 UNSW COMP9312_23T2



Two-Hop 
Cover
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2-Hop Cover SODA ‘02

An index which compresses transitive closure…

Intuition: if we choose a node u as a center node, then all u’s  
ancestors can reach u’s  descendants.
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2-Hop Cover
An index which compresses transitive closure…

Intuition: if we choose a node u as a center node, then all u’s  
ancestors can reach u’s  descendants.

Example: So if we choose node 1 as a center node, each of its 
ancestors of {0, 2, 3}  can reach any node in its descendants of 
{4,5}

0

1

23

4

5

0

1

23

4

5

Original Graph G TC(G)48 UNSW COMP9312_23T2



2-Hop Cover
Based on that, we can label nodes as follows:

– each node u is assigned two label sets 𝐿() 𝑢 ⊆ 𝑉 and 𝐿*+,(𝑢) ⊆ 𝑉	
– for each 𝑣 ∈ 𝐿*+,(𝑢), it indicates that node 𝑢 reaches node 𝑣. 
– for each 𝑣′ ∈ 𝐿()(𝑢), it indicates that node 𝑣′ reaches node 𝑢. 

A 2-hop cover includes two label sets 𝐿*+, and 𝐿() that can cover all the 
edges in TC(G)…. 
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A possible 2-hop cover

0 1 2 3 4 5
Lin {0} {1} {2} {0, 3} {1, 4} {1, 4, 5}

Lout {1, 4, 0} {1} {1, 2} {1, 4, 3} {4} {5}
0

1

23

4

5
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2-Hop Cover: Query Processing
Now reachability queries can be answered using the labels:

– ? 𝑢 ↝𝑣
if 𝐿𝑜𝑢𝑡(𝑢)⋂𝐿𝑖𝑛(𝑣) ≠ ∅ then return true
if 𝐿𝑜𝑢𝑡(𝑢)⋂𝐿𝑖𝑛(𝑣) = ∅ then return false
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2-Hop Cover: Query Processing
Now reachability queries can be answered using the labels:

– ? 𝑢 ↝𝑣
if 𝐿𝑜𝑢𝑡(𝑢)⋂𝐿𝑖𝑛(𝑣) ≠ ∅ then return true
if 𝐿𝑜𝑢𝑡(𝑢)⋂𝐿𝑖𝑛(𝑣) = ∅ then return false

– Time complexity is 𝑂(|𝐿*+, 𝑢 | + |𝐿() 𝑣 |)
More about time complexity:
𝑂(|𝐿"#$ 𝑢 | + |𝐿%& 𝑣 |) : Hash table
𝑂(log( 𝐿"#$ 𝑢 )|𝐿"#$ 𝑢 | + log(|𝐿%& 𝑣 |)|𝐿%& 𝑣 |) : Sort-merge join
𝑂(min( 𝐿"#$ 𝑢 , 𝐿%& 𝑣 )) : Precomputed hash table
𝑂(|𝐿"#$ 𝑢 | + |𝐿%& 𝑣 |) : Precomputed order + merge join
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2-Hop Cover: Query Processing

Now reachability queries can be answered using the labels:
– ? 𝑢 ↝𝑣

if 𝐿𝑜𝑢𝑡(𝑢)⋂𝐿𝑖𝑛(𝑣) ≠ ∅ then return true
if 𝐿𝑜𝑢𝑡(𝑢)⋂𝐿𝑖𝑛(𝑣) = ∅ then return false

0 1 2 3 4 5
Lin {0} {1} {2} {0, 3} {1, 4} {1, 4, 5}
Lout {1, 4, 0} {1} {1, 2} {1, 4, 3} {4} {5}For example,

? 0 ↝ 5
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2-Hop Cover: Query Processing

Now reachability queries can be answered using the labels:
– ? 𝑢 ↝𝑣

if 𝐿𝑜𝑢𝑡(𝑢)⋂𝐿𝑖𝑛(𝑣) ≠ ∅ then return true
if 𝐿𝑜𝑢𝑡(𝑢)⋂𝐿𝑖𝑛(𝑣) = ∅ then return false

0 1 2 3 4 5
Lin {0} {1} {2} {0, 3} {1, 4} {1, 4, 5}
Lout {1, 4, 0} {1} {1, 2} {1, 4, 3} {4} {5}For example,

? 0 ↝ 5 Lout(0) ⋂ Lin(5) = {1, 4, 0} ⋂ {1, 4, 5} ≠ ∅ YES
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2-Hop Cover: Query Processing
Now reachability queries can be answered using the labels:

– ? 𝑢 ↝𝑣
if 𝐿𝑜𝑢𝑡(𝑢)⋂𝐿𝑖𝑛(𝑣) ≠ ∅ then return true
if 𝐿𝑜𝑢𝑡(𝑢)⋂𝐿𝑖𝑛(𝑣) = ∅ then return false

0 1 2 3 4 5
Lin {0} {1} {2} {0, 3} {1, 4} {1, 4, 5}
Lout {1, 4, 0} {1} {1, 2} {1, 4, 3} {4} {5}For example,

? 0 ↝ 5 Lout(0) ⋂ Lin(5) = {1, 4, 0} ⋂ {1, 4, 5} ≠ ∅ YES

? 0 ↝ 2
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2-Hop Cover: Query Processing

Now reachability queries can be answered using the labels:
– ? 𝑢 ↝𝑣

if 𝐿𝑜𝑢𝑡(𝑢)⋂𝐿𝑖𝑛(𝑣) ≠ ∅ then return true
if 𝐿𝑜𝑢𝑡(𝑢)⋂𝐿𝑖𝑛(𝑣) = ∅ then return false

0 1 2 3 4 5
Lin {0} {1} {2} {0, 3} {1, 4} {1, 4, 5}
Lout {1, 4, 0} {1} {1, 2} {1, 4, 3} {4} {5}For example,

? 0 ↝ 5 Lout(0) ⋂ Lin(5) = {1, 4, 0} ⋂ {1, 4, 5} ≠ ∅ YES

? 0 ↝ 2 Lout(0) ⋂ Lin(2) = {1, 4, 0} ⋂ {2} = ∅ NO
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2-Hop Cover Index: Minimum VS 
Minimal

When we say something is minimum, that means it is the globally smallest.

When we say some thing is minimal, that means it has no redundancy.

MinimumMinimal

Compute the minimum 2-hop cover index is NP-hard.

Conceptually, using all 
reachable vertices as the label 
is also a 2-hop cover index, but 
it is not minimal. 
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2-Hop Cover: the minimal index
0 1 2 3 4 5

Lin {0} {1} {2} {0, 3} {1, 
4}

{1, 4, 
5}

Lout {1, 4, 0} {1} {1, 2} {1, 4, 3} {4} {5}

0

1

23

4

5

Naive Index

0 1 2 3 4 5
Lin {0} {1} {2} {0, 3} {1, 

4}
{1, 4, 
5}

Lout {1, 0} {1} {1, 2} {1, 3} {4} {5}

Minimal Index
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Motivation
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Total-order-based 2-Hop Cover
An algorithm to compute a minimal 2-hop cover

For each node u in the graph from high-degree to low-degree:
• add u into both Lin(u) and Lout(u);
• mark u as processed;
• conduct BFS from u and for each reached node w:

- if (u,w) has been covered: stop exploring out-neighbors of w;
- else: add u into Lin(w);

• conduct reverse BFS from u and for each reached node w’:
- if (w’,u) has been covered: stop exploring in-neighbors of w’;
- else: add u into Lout(w’);
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2-Hop Cover - Example
After choosing node 1, we add it at

0 1 2 3 4 5
Lin {1} {1} {1}

Lout {1} {1} {1} {1}

𝐿*+, 0 ,  𝐿*+, 2 , 𝐿*+, 3
𝐿() 4 , 𝐿() 5
𝐿() 1 ,  𝐿*+, 1

0

1

23

4

5
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2-Hop Cover - Example
Then we choose node 4, we add it at

𝐿() 4 , 𝐿*+, 4
𝐿() 5
𝐿*+, 0 , 𝐿*+, 3

0 1 2 3 4 5
Lin {1} {1, 4} {1, 4}

Lout {1} {1} {1} {1} {4}
0

1

23

4

5

0,4 	𝑖𝑠	𝑐𝑜𝑣𝑒𝑟𝑒𝑑	𝑏𝑦	1
3,4 	𝑖𝑠	𝑐𝑜𝑣𝑒𝑟𝑒𝑑	𝑏𝑦	1
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2-Hop Cover - Example
Then we choose node 0, we add it at

𝐿() 0 , 𝐿*+, 0
𝐿() 3

0 1 2 3 4 5
Lin {0} {1} {0} {1, 4} {1, 4}

Lout {1, 0} {1} {1} {1} {4}
0

1

23

4

5
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2-Hop Cover - Example
Then we choose node 3, we add it at

𝐿() 3 , 𝐿*+, 3

0 1 2 3 4 5
Lin {0} {1} {0, 3} {1, 4} {1, 4}

Lout {1, 0} {1} {1} {1, 3} {4}
0

1

23

4

5
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2-Hop Cover - Example
Then we choose node 3, we add it at

𝐿() 3 , 𝐿*+, 3

0 1 2 3 4 5
Lin {0} {1} {0, 3} {1, 4} {1, 4, 5}

Lout {1, 0} {1} {1} {1, 3} {4} {5}
0

1

23

4

5

Then we choose node 5, we add it at
𝐿() 5 , 𝐿*+, 5
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2-Hop Cover - Example
Then we choose node 3, we add it at

𝐿%& 3 , 𝐿"#$ 3

0 1 2 3 4 5
Lin {0} {1} {2} {0, 3} {1, 4} {1, 4, 5}

Lout {1, 0} {1} {1, 2} {1, 3} {4} {5}
0

1

23

4

5

Then we choose node 5, we add it at
𝐿%& 5 , 𝐿"#$ 5

Finally, we choose node 2, we add it at
𝐿%& 2 , 𝐿"#$ 2
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Quick Exercise

0

1

2

3

4

1. Can you compute the 2-hop cover of this graph?
• Note that you need to process the nodes in the order of 

1, 2, 4, 3, 0

2. Based on the computed 2-hop cover, please 
compute ? 0 ↝ 2 and ? 1 ↝ 3
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UNSW COMP9312_23T2

0 1 2 3 4
Lin {1} {1} {1}

Lout {1} {1} {1}

We start with 1 and add it in 

𝐿*+, 0 ,  𝐿*+, 2

𝐿() 4 , 𝐿() 3
𝐿() 1 ,  𝐿*+, 1

0

1

2

3

4

Quick Exercise
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0 1 2 3 4
Lin {2} {1} {2} {1} {1}
Lout {1} {1} {1, 2}

0

1

2

3

4
Then, we process 2 and add it in 

𝐿() 0
𝐿() 2 ,  𝐿*+, 2

Quick Exercise
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0 1 2 3 4
Lin {2} {1} {2} {1,4} {1, 4}
Lout {1} {1} {1, 2} {4}

0

1

2

3

4
Then, we process 4 and add it in 

𝐿() 3
𝐿() 4 ,  𝐿*+, 4

Quick Exercise
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0 1 2 3 4
Lin {2} {1} {2} {1, 4, 3} {1, 4}
Lout {1} {1} {1, 2} {3} {4}

0

1

2

3

4
Then, we process 3 and add it in 

𝐿() 3 ,  𝐿*+, 3

Quick Exercise
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0 1 2 3 4
Lin {2, 0} {1} {2} {1, 4, 3} {1, 4}
Lout {1, 0} {1} {1, 2} {3} {4}

0

1

2

3

4 Then, we process 0 and add it in 
𝐿() 0 ,  𝐿*+, 0

Quick Exercise
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UNSW COMP9312_23T2

0 1 2 3 4
Lin {2, 0} {1} {2} {1, 4, 3} {1, 4}
Lout {1, 0} {1} {1, 2} {3} {4}

? 0 ↝ 2 Lout(0) ⋂ Lin(2) = {1, 0} ⋂ {2} = ∅ NO

? 1 ↝ 3 Lout(1) ⋂ Lin(3) = {1} ⋂ {1, 4, 3} ≠ ∅ YES

Quick Exercise
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Learning Outcome

- Know the difference between transitive closure, tree cover, and two-
Hop labelling.

- Know how to construct transitive closure, tree cover, and two-Hop 
labelling.  In addition, how to compute the reachability queries using 
these structures.
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