
Graph Traversal (cont)
COMP9312_23T2

UNSW COMP9312_23T2

Minimum
spanning
tree

Minimum Spanning Tree
In this topic, we will
• Define a spanning tree
• Define the weight of a spanning tree in a weighted graph
• Define a minimum spanning tree
• Applications
• Solutions

Given 5 vertices, how many undirected edges are
needed at least to connect these vertices together?

Given n vertices, how many undirected edges are
needed at least to connect these vertices together?

3 UNSW COMP9312_23T2

Minimum Spanning Tree
In this topic, we will
• Define a spanning tree
• Define the weight of a spanning tree in a weighted graph
• Define a minimum spanning tree
• Applications
• Solutions

Given 5 vertices, how many undirected edges are
needed at least to connect these vertices together?

Given n vertices, how many undirected edges are
needed at least to connect these vertices together?

4

n-1
4 UNSW COMP9312_23T2

Spanning trees
Given a connected graph with n vertices, a spanning tree is defined a
collection of n – 1 edges which connect all n vertices.
• The n vertices and n – 1 edges define a connected sub-graph.

A spanning tree is not necessarily unique.

5 UNSW COMP9312_23T2

Spanning trees
Such a collection of edges is called a tree because if any vertex is taken to
be the root, we form a tree by treating the adjacent vertices as children.

UNSW COMP9312_23T26

Spanning trees on weighted graphs
The weight of a spanning tree is the sum of the weights on all the edges
which comprise the spanning tree

The weight of the above spanning tree is 20

The weight of the above spanning tree is 28

7 UNSW COMP9312_23T2

Minimum Spanning Trees
Which spanning tree which minimizes the weight?
• Such a tree is termed a minimum spanning tree

The weight of this spanning tree is 14

8 UNSW COMP9312_23T2

Spanning forests
Suppose that a graph is composed of N connected vertex-induced sub-graphs
• In this case, we may define a spanning forest as a collection of N spanning trees, one for

each connected vertex-induced sub-graph

• A minimum spanning forest is therefore a collection of N minimum spanning trees, one
for each connected vertex-induced sub-graph

9 UNSW COMP9312_23T2

Application
Consider supplying power to
• All circuit elements on a board
• A number of loads within a building

A minimum spanning tree will give the lowest-cost solution

www.commedore.ca
www.kpmb.com

10 UNSW COMP9312_23T2

Application
The first application of a minimum spanning tree algorithm was by the Czech
mathematician Otakar Borůvka who designed electricity grid in Morovia in
1926

www.commedore.ca
www.kpmb.com

11 UNSW COMP9312_23T2

Application
Consider attempting to find the best means of connecting a number of LANs
• Minimize the number

of bridges
• Costs not strictly

dependant on
distances

12 UNSW COMP9312_23T2

Application
Consider an ad hoc wireless network
• Any two terminals can connect with any others

Problem:
• Errors in transmission increase with transmission length
• Can we find clusters of terminals which can communicate safely?

13 UNSW COMP9312_23T2

Application
Find a minimum spanning tree

14 UNSW COMP9312_23T2

Application
Remove connections which are too long

This clusters terminals into smaller and more manageable sub-networks

15 UNSW COMP9312_23T2

Prim’s
Algorithm

UNSW COMP9312_23T2

Algorithms for finding MST
Prim’s algorithm for finding the minimum spanning tree states:
• Start with an arbitrary vertex to form a minimum spanning tree on one vertex
• At each step, add that vertex v not yet in the minimum spanning tree that has an edge

with least weight that connects v to the existing minimum spanning sub-tree
• Continue until we have n – 1 edges and n vertices

17 UNSW COMP9312_23T2

Motivation for Prim’s algorithm
Suppose we take a vertex
• Given a single vertex e1, it forms a minimum spanning tree on one vertex

v1

18 UNSW COMP9312_23T2

Motivation for Prim’s algorithm
Add that adjacent vertex v2 that has a connecting edge e1 of minimum weight
• This forms a minimum spanning tree on our two vertices and e1 must be in any minimum

spanning tree containing the vertices v1 and v2

v1

v2

e1

19 UNSW COMP9312_23T2

Motivation for Prim’s algorithm
Strategy:
• Suppose we have a known minimum spanning tree on k < n vertices
• How could we extend this minimum spanning tree?

Motivation for Prim’s algorithm
Add that edge ek with least weight that connects this minimum spanning
tree to a new vertex vk + 1
• This does create a minimum spanning tree on k + 1 nodes—there is no other edge we

could add that would connect this vertex
• Does the new edge, however, belong to the minimum spanning tree on all n vertices?

vk + 1

ek

Yes

21 UNSW COMP9312_23T2

OptionalMotivation for Prim’s algorithm

Proof: Suppose it does not
• Thus, vertex vk + 1 is connected to the minimum spanning tree via another

sequence of edges

22 UNSW COMP9312_23T2

vk + 1

ek

OptionalMotivation for Prim’s algorithm
Proof: Because a minimum spanning tree is connected, there must be a
path from vertex vk + 1 back to our existing minimum spanning tree
• It must be connected along some edge

23 UNSW COMP9312_23T2

vk + 1

e

ek

e

OptionalMotivation for Prim’s algorithm
Proof: Let w be the weight of this minimum spanning tree
• Recall, however, that when we chose to add vk + 1, it was because ekwas the edge

connecting an adjacent vertex with least weight
• Therefore where |e| represents the weight of the edge e

24 UNSW COMP9312_23T2

vk + 1

ek

e

ke e>
0ke e- <

OptionalMotivation for Prim’s algorithm
Proof: Consider, however, suppose we swap edges and instead choose to
include ek and exclude
• The result is still a minimum spanning tree, but the weight is now

25 UNSW COMP9312_23T2

vk + 1

ek + 1

e

1kw e e w++ - £
e

OptionalMotivation for Prim’s algorithm
Proof: Thus, by swapping ek for , we have a spanning tree that has less
weight than the so-called minimum spanning tree containing
• This contradicts our assumption that the spanning tree containing was minimal
• Therefore, our minimum spanning tree must contain ek

26 UNSW COMP9312_23T2

vk + 1

ek

e

e
e

e

Strategy
Recall that we did not prescribe the value of k, and thus, k could be any
value, including k = 1

vk + 1

ek

e

27 UNSW COMP9312_23T2

Prim’s Algorithm
Associate with each vertex three items of data:
• A Boolean flag indicating if the vertex has been visited,
• The minimum distance to the partially constructed tree, and
• A pointer to that vertex which will form the parent node in the resulting tree

28 UNSW COMP9312_23T2

Prim’s Algorithm

Initialization:
• Select a root node and set its distance as 0
• Set the distance to all other vertices as ∞
• Set all vertices to being unvisited
• Set the parent pointer of all vertices to 0

Iterate while there exists an unvisited vertex with distance < ∞
– Select that unvisited vertex with minimum distance
– Mark that vertex as having been visited
– For each adjacent vertex, if the weight of the connecting edge is less

than the current distance to that vertex:
• Update the distance to equal the weight of the edge
• Set the current vertex as the parent of the adjacent vertex

29 UNSW COMP9312_23T2

Prim’s Algorithm
Stopping Conditions:
• There are no unvisited vertices which have a distance < ∞

If all vertices have been visited, we have a spanning tree of the entire graph

If there are vertices with distance ∞, then the graph is not connected and we
only have a minimum spanning tree of the connected sub-graph containing
the root

30 UNSW COMP9312_23T2

Prim’s Algorithm
Let us find the minimum spanning tree for the following undirected weighted graph.
First we set up the appropriate table and initialize it

Distance Parent
1 F 0 0

2 F ∞ 0
3 F ∞ 0
4 F ∞ 0
5 F ∞ 0
6 F ∞ 0
7 F ∞ 0
8 F ∞ 0
9 F ∞ 0

31 UNSW COMP9312_23T2

Prim’s Algorithm
Visiting vertex 1, we update vertices 2, 4, and 5

Distance Parent
1 T 0 0

2 F 4 1
3 F ∞ 0
4 F 1 1
5 F 8 1
6 F ∞ 0
7 F ∞ 0
8 F ∞ 0
9 F ∞ 0

32 UNSW COMP9312_23T2

Prim’s Algorithm
What these numbers really mean is that at this point, we could extend the
trivial tree containing just the root node by one of the three possible children:

As we wish to find a minimum spanning tree, it makes sense we add that
vertex with a connecting edge with least weight

33 UNSW COMP9312_23T2

Prim’s Algorithm
The next unvisited vertex with minimum distance is vertex 4
• Update vertices 2, 7, 8
• Don’t update vertex 5 Distance Parent

1 T 0 0

2 F 2 4
3 F ∞ 0
4 T 1 1
5 F 8 1
6 F ∞ 0
7 F 9 4
8 F 8 4
9 F ∞ 0

34 UNSW COMP9312_23T2

Prim’s Algorithm
Now that we have updated all vertices adjacent to vertex 4, we can extend
the tree by adding one of the edges
 (1, 5), (4, 2), (4, 7), or (4, 8)

We add that edge with the least
weight: (4, 2)

35 UNSW COMP9312_23T2

Prim’s Algorithm
Next visit vertex 2
• Update 3, 5, and 6 Distance Parent

1 T 0 0

2 T 2 4
3 F 2 2
4 T 1 1
5 F 6 2
6 F 1 2
7 F 9 4
8 F 8 4
9 F ∞ 0

36 UNSW COMP9312_23T2

Prim’s Algorithm
Again looking at the shortest edges to each of the vertices adjacent to the
current tree, we note that we can add (2, 6) with the least increase in weight

37 UNSW COMP9312_23T2

Prim’s Algorithm
Next, we visit vertex 6:
• update vertices 5, 8, and 9

Distance Parent
1 T 0 0

2 T 2 4
3 F 2 2
4 T 1 1
5 F 3 6
6 T 1 2
7 F 9 4
8 F 7 6
9 F 8 6

38 UNSW COMP9312_23T2

Prim’s Algorithm
The edge with least weight is (2, 3)
• This adds the weight of 2 to the weight minimum spanning tree

39 UNSW COMP9312_23T2

Prim’s Algorithm
Next, we visit vertex 3 and update 5 Distance Parent

1 T 0 0

2 T 2 4
3 T 2 2
4 T 1 1
5 F 2 3
6 T 1 2
7 F 9 4
8 F 7 6
9 F 8 6

40 UNSW COMP9312_23T2

Prim’s Algorithm
At this point, we can extend the tree by adding the edge (3, 5)

41 UNSW COMP9312_23T2

Prim’s Algorithm
Visiting vertex 5, we update 7, 8, 9

Distance Parent
1 T 0 0

2 T 2 4
3 T 2 2
4 T 1 1
5 T 2 3
6 T 1 2
7 F 4 5
8 F 1 5
9 F 5 5

42 UNSW COMP9312_23T2

Prim’s Algorithm
At this point, there are three possible edges which we could include which
will extend the tree

The edge to 8 has the least weight

43 UNSW COMP9312_23T2

Prim’s Algorithm
Visiting vertex 8, we only update vertex 9

Distance Parent
1 T 0 0

2 T 2 4
3 T 2 2
4 T 1 1
5 T 2 3
6 T 1 2
7 F 4 5
8 T 1 5
9 F 3 8

44 UNSW COMP9312_23T2

Prim’s Algorithm
There are no other vertices to update while visiting vertex 9

Distance Parent
1 T 0 0

2 T 2 4
3 T 2 2
4 T 1 1
5 T 2 3
6 T 1 2
7 F 4 5
8 T 1 5
9 T 3 8

45 UNSW COMP9312_23T2

Prim’s Algorithm
And neither are there any vertices to update when visiting vertex 7

Distance Parent
1 T 0 0

2 T 2 4
3 T 2 2
4 T 1 1
5 T 2 3
6 T 1 2
7 T 4 5
8 T 1 5
9 T 3 8

46 UNSW COMP9312_23T2

Prim’s Algorithm
At this point, there are no more unvisited vertices, and therefore we are
done

If at any point, all remaining vertices had a distance of ∞, this would indicate
that the graph is not connected
• in this case, the minimum spanning tree would only span one connected sub-graph

47 UNSW COMP9312_23T2

Prim’s Algorithm

Using the parent pointers, we can now construct the minimum
spanning tree

Distance Parent
1 T 0 0

2 T 2 4
3 T 2 2
4 T 1 1
5 T 2 3
6 T 1 2
7 T 4 5
8 T 1 5
9 T 3 8

48 UNSW COMP9312_23T2

Prim’s Algorithm
To summarize:
• we begin with a vertex which represents the root
• starting with this trivial tree and iteration, we find the shortest edge which we can add to

this already existing tree to expand it

This is a reasonably efficient algorithm: the number of visits to vertices is
kept to a minimum

49 UNSW COMP9312_23T2

Implementation and analysis
The initialization requires O(|V|) memory and run time

We iterate |V| – 1 times, each time finding the closest vertex
• Iterating through the table requires is O(|V|) time
• Each time we find a vertex, we must check all of its neighbors
• With an adjacency matrix, the run time is O(|V|(|V| + |V|)) = O(|V|2)
• With an adjacency list, the run time is O(|V|2 + |E|) = O(|V|2) as |E| = O(|V|2)

Can we do better?
Recall, we only need the vertex with the shortest distance next
How about a min heap?

50 UNSW COMP9312_23T2

Min-heap-based optimization
a min heap

The initialization still requires O(|V|) memory and run time
– The min heap will also require O(|V|) memory which contains the distance of all

the vertices
 We iterate |V| – 1 times, each time finding the closest vertex

– Obtain the shortest distance from the min heap O(1), maintain the heap O(log(|V|))
– Thus, the work required for this is O(|V| log(|V|))

 Is this all the work that is necessary?
– Recall that for the closest vertex in an iteration, we try to update the distance of

all its neighbors, thus there are O(|E|) updates in total and each update in the
heap requires O(log(|V|)).

– Thus, the work required for this is O(|E| log(|V|))
 Thus, the total run time is O(|V| log(|V|) + |E| log(|V|)) = O(|E| log(|V|))

51 UNSW COMP9312_23T2

Time Complexity

Prim’s algorithm: different implementations

§ O(m*log(n))

§ O(m*log(m))

§ O(m+n*log(n))
§ theoretically good, but not practically efficient

Confused?
We will analyze these results again in the Dijkstra Algorithm.

52 UNSW COMP9312_23T2

Distance Parent
1 F 0 0

2 F ∞ 0
3 F ∞ 0
4 F ∞ 0
5 F ∞ 0
6 F ∞ 0
7 F ∞ 0
8 F ∞ 0
9 F ∞ 0

9

1

2 3

7

8

654 𝑑 = ∞ 𝑑 = ∞ 𝑑 = ∞ 𝑑 = ∞

𝑑 = ∞ 𝑑 = ∞

𝑑 = ∞𝑑 = ∞

𝑑 = 0

Min-heap-based optimization

53 UNSW COMP9312_23T2

Min-heap-based optimization

Visiting vertex 1, we update vertices 2, 4, and 5

Distance Parent
1 T 0 0

2 F 4 1
3 F ∞ 0
4 F 1 1
5 F 8 1
6 F ∞ 0
7 F ∞ 0
8 F ∞ 0
9 F ∞ 0

4

2 3

7

8

659 𝑑 = ∞

𝑑 = ∞

𝑑 = 1

𝑑 = 4 𝑑 = ∞

𝑑 = 8 𝑑 = ∞ 𝑑 = ∞

54 UNSW COMP9312_23T2

Kruskal’s
Algorithm

UNSW COMP9312_23T2

Kruskal’s Algorithm
Kruskal’s algorithm sorts the edges by weight and goes through the edges
from least weight to greatest weight adding the edges to an empty graph so
long as the addition does not create a cycle

The halting point is:
• When |V| – 1 edges have been added

• In this case we have a minimum spanning tree
• We have gone through all edges, in which case, we have a forest of minimum spanning

trees on all connected sub-graphs

56 UNSW COMP9312_23T2

Example
Consider the game of Risk from Parker Brothers
• A game of world domination
• The world is divided into 42 connected regions
• The regions are vertices and edges indicate adjacent regions

http://thunderbird37.com/tag/parker-brothers/ 57 UNSW COMP9312_23T2

UNSW COMP9312_23T2

Example
Here is our abstract representation of Asia. Let us
give a weight to each of the edges. First, we sort
the edges based on weight.

{C, E}
{H, I}
{G, I}
{F, G}
{B, E}
{E, H}
{B, C}
{H, K}
{H, L}
{D, E}
{G, H}
{I, K}
{B, D}
{D, F}
{E, G}
{K, L}
{J, K}
{J, I}
{J, G}
{A, B}
{A, D}
{E, F}58

UNSW COMP9312_23T2

Example
We start by adding edge {C, E}

{C, E}
{H, I}
{G, I}
{F, G}
{B, E}
{E, H}
{B, C}
{H, K}
{H, L}
{D, E}
{G, H}
{I, K}
{B, D}
{D, F}
{E, G}
{K, L}
{J, K}
{J, I}
{J, G}
{A, B}
{A, D}
{E, F}59

UNSW COMP9312_23T2

Example

We add edge {H, I}

{C, E}
{H, I}
{G, I}
{F, G}
{B, E}
{E, H}
{B, C}
{H, K}
{H, L}
{D, E}
{G, H}
{I, K}
{B, D}
{D, F}
{E, G}
{K, L}
{J, K}
{J, I}
{J, G}
{A, B}
{A, D}
{E, F}60

UNSW COMP9312_23T2

Example
We add edge {G, I}

{C, E}
{H, I}
{G, I}
{F, G}
{B, E}
{E, H}
{B, C}
{H, K}
{H, L}
{D, E}
{G, H}
{I, K}
{B, D}
{D, F}
{E, G}
{K, L}
{J, K}
{J, I}
{J, G}
{A, B}
{A, D}
{E, F}61

UNSW COMP9312_23T2

Example
We add edge {F, G}

{C, E}
{H, I}
{G, I}
{F, G}
{B, E}
{E, H}
{B, C}
{H, K}
{H, L}
{D, E}
{G, H}
{I, K}
{B, D}
{D, F}
{E, G}
{K, L}
{J, K}
{J, I}
{J, G}
{A, B}
{A, D}
{E, F}62

UNSW COMP9312_23T2

Example
We add edge {B, E}

{C, E}
{H, I}
{G, I}
{F, G}
{B, E}
{E, H}
{B, C}
{H, K}
{H, L}
{D, E}
{G, H}
{I, K}
{B, D}
{D, F}
{E, G}
{K, L}
{J, K}
{J, I}
{J, G}
{A, B}
{A, D}
{E, F}63

UNSW COMP9312_23T2

Example
We add edge {E, H}
• This coalesces the two spanning sub-trees into one

{C, E}
{H, I}
{G, I}
{F, G}
{B, E}
{E, H}
{B, C}
{H, K}
{H, L}
{D, E}
{G, H}
{I, K}
{B, D}
{D, F}
{E, G}
{K, L}
{J, K}
{J, I}
{J, G}
{A, B}
{A, D}
{E, F}64

UNSW COMP9312_23T2

Example
We try adding {B, C}, but it creates a cycle

{C, E}
{H, I}
{G, I}
{F, G}
{B, E}
{E, H}
{B, C}
{H, K}
{H, L}
{D, E}
{G, H}
{I, K}
{B, D}
{D, F}
{E, G}
{K, L}
{J, K}
{J, I}
{J, G}
{A, B}
{A, D}
{E, F}65

UNSW COMP9312_23T2

Example
We add edge {H, K}

{C, E}
{H, I}
{G, I}
{F, G}
{B, E}
{E, H}
{B, C}
{H, K}
{H, L}
{D, E}
{G, H}
{I, K}
{B, D}
{D, F}
{E, G}
{K, L}
{J, K}
{J, I}
{J, G}
{A, B}
{A, D}
{E, F}66

UNSW COMP9312_23T2

Example
We add edge {H, L}

{C, E}
{H, I}
{G, I}
{F, G}
{B, E}
{E, H}
{B, C}
{H, K}
{H, L}
{D, E}
{G, H}
{I, K}
{B, D}
{D, F}
{E, G}
{K, L}
{J, K}
{J, I}
{J, G}
{A, B}
{A, D}
{E, F}67

UNSW COMP9312_23T2

Example
We add edge {D, E}

{C, E}
{H, I}
{G, I}
{F, G}
{B, E}
{E, H}
{B, C}
{H, K}
{H, L}
{D, E}
{G, H}
{I, K}
{B, D}
{D, F}
{E, G}
{K, L}
{J, K}
{J, I}
{J, G}
{A, B}
{A, D}
{E, F}68

UNSW COMP9312_23T2

Example
We try adding {G, H}, but it creates a cycle

{C, E}
{H, I}
{G, I}
{F, G}
{B, E}
{E, H}
{B, C}
{H, K}
{H, L}
{D, E}
{G, H}
{I, K}
{B, D}
{D, F}
{E, G}
{K, L}
{J, K}
{J, I}
{J, G}
{A, B}
{A, D}
{E, F}69

UNSW COMP9312_23T2

Example
We try adding {I, K}, but it creates a cycle

{C, E}
{H, I}
{G, I}
{F, G}
{B, E}
{E, H}
{B, C}
{H, K}
{H, L}
{D, E}
{G, H}
{I, K}
{B, D}
{D, F}
{E, G}
{K, L}
{J, K}
{J, I}
{J, G}
{A, B}
{A, D}
{E, F}70

UNSW COMP9312_23T2

Example
We try adding {B, D}, but it creates a cycle

{C, E}
{H, I}
{G, I}
{F, G}
{B, E}
{E, H}
{B, C}
{H, K}
{H, L}
{D, E}
{G, H}
{I, K}
{B, D}
{D, F}
{E, G}
{K, L}
{J, K}
{J, I}
{J, G}
{A, B}
{A, D}
{E, F}71

UNSW COMP9312_23T2

Example
We try adding {D, F}, but it creates a cycle

{C, E}
{H, I}
{G, I}
{F, G}
{B, E}
{E, H}
{B, C}
{H, K}
{H, L}
{D, E}
{G, H}
{I, K}
{B, D}
{D, F}
{E, G}
{K, L}
{J, K}
{J, I}
{J, G}
{A, B}
{A, D}
{E, F}72

UNSW COMP9312_23T2

Example
We try adding {E, G}, but it creates a cycle

{C, E}
{H, I}
{G, I}
{F, G}
{B, E}
{E, H}
{B, C}
{H, K}
{H, L}
{D, E}
{G, H}
{I, K}
{B, D}
{D, F}
{E, G}
{K, L}
{J, K}
{J, I}
{J, G}
{A, B}
{A, D}
{E, F}73

UNSW COMP9312_23T2

Example
By observation, we can still add edges {J, K} and {A, B}

{C, E}
{H, I}
{G, I}
{F, G}
{B, E}
{E, H}
{B, C}
{H, K}
{H, L}
{D, E}
{G, H}
{I, K}
{B, D}
{D, F}
{E, G}
{K, L}
{J, K}
{J, I}
{J, G}
{A, B}
{A, D}
{E, F}74

UNSW COMP9312_23T2

Example
Having added {A, B}, we now have 11 edges
• We terminate the loop
• We have our minimum spanning tree

{C, E}
{H, I}
{G, I}
{F, G}
{B, E}
{E, H}
{B, C}
{H, K}
{H, L}
{D, E}
{G, H}
{I, K}
{B, D}
{D, F}
{E, G}
{K, L}
{J, K}
{J, I}
{J, G}
{A, B}
{A, D}
{E, F}75

UNSW COMP9312_23T2

Analysis
Implementation
• We would store the edges and their weights in an array
• We would sort the edges using either quicksort or some distribution sort
• To determine if a cycle is created, we could perform a BFS traversal

• A run-time of O(|V|)
• Consequently, the run-time would be O(|E| log(|E|) + |E|·|V|)
• However, |E| = O(|V|2), so log(E) = O(log(|V|2)) = O(2 log(|V|)) = O(log(|V|))
• Consequently, the run-time would be O(|E| log(|E|) + |E||V|) = O(|E|·|V|)

The critical operation is determining if two vertices are connected

76

UNSW COMP9312_23T2

Analysis
Instead, we could use disjoint sets
• Consider edges in the same connected sub-graph as forming a set
• If the vertices of the next edge are in different sets, take the union of the two sets
• Do not add an edge if both vertices are in the same set

{B, C, E}, {F, G, H, I}

{B, C, E, F, G, H, I}Add edge (E, H)?

77

UNSW COMP9312_23T2

Analysis
The disjoint set data structure has the following average run-times:
• Checking if two vertices are in the same set is almost linear
• Taking the union of two disjoint sets is almost linear

Thus, checking and building the minimum spanning tree is now O(|E|)

The dominant time is now the time required to sort the edges:
• Using quicksort, the run-time is O(|E| log(|E|))

78

UNSW COMP9312_23T2

Example
Going through the example again with disjoint sets.
We start with twelve singletons

{C, E}
{H, I}
{G, I}
{F, G}
{B, E}
{E, H}
{B, C}
{H, K}
{H, L}
{D, E}
{G, H}
{I, K}
{B, D}
{D, F}
{E, G}
{K, L}
{J, K}
{J, I}
{J, G}
{A, B}
{A, D}
{E, F}

{A}, {B}, {C}, {D}, {E}, {F}, {G}, {H}, {I}, {J}, {K}, {L}

Initialization:
For each vertex 𝑢! ∈ [𝐴, 𝐿], each vertex
direct to themselves.

𝑢!

79

UNSW COMP9312_23T2

Example
We start by adding edge {C, E}

{C, E}
{H, I}
{G, I}
{F, G}
{B, E}
{E, H}
{B, C}
{H, K}
{H, L}
{D, E}
{G, H}
{I, K}
{B, D}
{D, F}
{E, G}
{K, L}
{J, K}
{J, I}
{J, G}
{A, B}
{A, D}
{E, F}

{A}, {B}, {C, E}, {D}, {F}, {G}, {H}, {I}, {J}, {K}, {L}

C

E

EC

80

UNSW COMP9312_23T2

C

E

Example
We add edge {H, I}

{C, E}
{H, I}
{G, I}
{F, G}
{B, E}
{E, H}
{B, C}
{H, K}
{H, L}
{D, E}
{G, H}
{I, K}
{B, D}
{D, F}
{E, G}
{K, L}
{J, K}
{J, I}
{J, G}
{A, B}
{A, D}
{E, F}

{A}, {B}, {C, E}, {D}, {F}, {G}, {H, I}, {J}, {K}, {L}

𝐻 I

𝐻

I

C

E 81

UNSW COMP9312_23T2

Example
Similarly, we add {G, I}, {F, G}, {B, E}

{C, E}
{H, I}
{G, I}
{F, G}
{B, E}
{E, H}
{B, C}
{H, K}
{H, L}
{D, E}
{G, H}
{I, K}
{B, D}
{D, F}
{E, G}
{K, L}
{J, K}
{J, I}
{J, G}
{A, B}
{A, D}
{E, F}

{A}, {B, C, E}, {D}, {F, G, H, I}, {J}, {K}, {L}

Add {F,G}:

Add {G,I}: According to the rule of Union by Size, make
smaller tree point to bigger one’s root.

Add {B,E} (Union by Size):

𝐻

IG

IG

𝐻

F

C

E𝐵

𝐻

I
G

𝐻

IG
F

C

E
𝐵

82

UNSW COMP9312_23T2

Example
The vertices of {E, H} are in different sets

{C, E}
{H, I}
{G, I}
{F, G}
{B, E}
{E, H}
{B, C}
{H, K}
{H, L}
{D, E}
{G, H}
{I, K}
{B, D}
{D, F}
{E, G}
{K, L}
{J, K}
{J, I}
{J, G}
{A, B}
{A, D}
{E, F}

{A}, {B, C, E}, {D}, {F, G, H, I}, {J}, {K}, {L}

C

EIG

𝐻

F

Merge these two trees:

B

Make smaller tree point to bigger one’s
root (C points to H).

C

E

IG

𝐻

F

B
83

UNSW COMP9312_23T2

Example
We try adding {B, C}, but it creates a cycle.

{C, E}
{H, I}
{G, I}
{F, G}
{B, E}
{E, H}
{B, C}
{H, K}
{H, L}
{D, E}
{G, H}
{I, K}
{B, D}
{D, F}
{E, G}
{K, L}
{J, K}
{J, I}
{J, G}
{A, B}
{A, D}
{E, F}

{A}, {B, C, E, F, G, H, I}, {D}, {J}, {K}, {L}

According to the rule of
Path Compression, while
finding B, direct B to the
root H. Because C is
already point to root, the
position of C would not
change. E

IG

𝐻

F BC

C

E

IG

𝐻

F

B

84

UNSW COMP9312_23T2

Example
We add edge {H, K}, {H, L}

{C, E}
{H, I}
{G, I}
{F, G}
{B, E}
{E, H}
{B, C}
{H, K}
{H, L}
{D, E}
{G, H}
{I, K}
{B, D}
{D, F}
{E, G}
{K, L}
{J, K}
{J, I}
{J, G}
{A, B}
{A, D}
{E, F}

{A}, {B, C, E, F, G, H, I, K, L}, {D}, {J}

IG

𝐻

F

E

KL C B

Add edge {H, K}, {H, L}:

E

IG

𝐻

F BC

85

UNSW COMP9312_23T2

Example
We add edge {D, E}

{C, E}
{H, I}
{G, I}
{F, G}
{B, E}
{E, H}
{B, C}
{H, K}
{H, L}
{D, E}
{G, H}
{I, K}
{B, D}
{D, F}
{E, G}
{K, L}
{J, K}
{J, I}
{J, G}
{A, B}
{A, D}
{E, F}

{A}, {B, C, D, E, F, G, H, I, K, L}, {J}

Add edge {D, E}:

IG

𝐻

F EKL C B D

While adding D, according to the rule of
Union by Size, make smaller tree D point to
the bigger one’s root H.
While finding E, according to the rule of
Path Compression, direct E to the root H.

IG

𝐻

F

E

KL C B

86

UNSW COMP9312_23T2

Example
Both G and H are in the same set

{C, E}
{H, I}
{G, I}
{F, G}
{B, E}
{E, H}
{B, C}
{H, K}
{H, L}
{D, E}
{G, H}
{I, K}
{B, D}
{D, F}
{E, G}
{K, L}
{J, K}
{J, I}
{J, G}
{A, B}
{A, D}
{E, F}

{A}, {B, C, D, E, F, G, H, I, K, L}, {J}

IG

𝐻

F EKL C B D

87

UNSW COMP9312_23T2

Example
Both {I, K} are in the same set

{C, E}
{H, I}
{G, I}
{F, G}
{B, E}
{E, H}
{B, C}
{H, K}
{H, L}
{D, E}
{G, H}
{I, K}
{B, D}
{D, F}
{E, G}
{K, L}
{J, K}
{J, I}
{J, G}
{A, B}
{A, D}
{E, F}

{A}, {B, C, D, E, F, G, H, I, K, L}, {J}

IG

𝐻

F EKL C B D

88

UNSW COMP9312_23T2

Example
Both {B, D} are in the same set

{C, E}
{H, I}
{G, I}
{F, G}
{B, E}
{E, H}
{B, C}
{H, K}
{H, L}
{D, E}
{G, H}
{I, K}
{B, D}
{D, F}
{E, G}
{K, L}
{J, K}
{J, I}
{J, G}
{A, B}
{A, D}
{E, F}

{A}, {B, C, D, E, F, G, H, I, K, L}, {J}

IG

𝐻

F EKL C B D

89

UNSW COMP9312_23T2

Example
Both {D, F} are in the same set

{C, E}
{H, I}
{G, I}
{F, G}
{B, E}
{E, H}
{B, C}
{H, K}
{H, L}
{D, E}
{G, H}
{I, K}
{B, D}
{D, F}
{E, G}
{K, L}
{J, K}
{J, I}
{J, G}
{A, B}
{A, D}
{E, F}

{A}, {B, C, D, E, F, G, H, I, K, L}, {J}

IG

𝐻

F EKL C B D

90

UNSW COMP9312_23T2

Example
Until adding {J,K}

{C, E}
{H, I}
{G, I}
{F, G}
{B, E}
{E, H}
{B, C}
{H, K}
{H, L}
{D, E}
{G, H}
{I, K}
{B, D}
{D, F}
{E, G}
{K, L}
{J, K}
{J, I}
{J, G}
{A, B}
{A, D}
{E, F}

{A}, {B, C, D, E, F, G, H, I, J, K, L}

IG

𝐻

F EKL C B D

IG

𝐻

F EKL C B DJ

91

UNSW COMP9312_23T2

Example
We end when there is only one set, having added (A, B)

{C, E}
{H, I}
{G, I}
{F, G}
{B, E}
{E, H}
{B, C}
{H, K}
{H, L}
{D, E}
{G, H}
{I, K}
{B, D}
{D, F}
{E, G}
{K, L}
{J, K}
{J, I}
{J, G}
{A, B}
{A, D}
{E, F}

{A, B, C, D, E, F, G, H, I, K, L, J}

EIG

𝐻

F BKL C D AJ

IG

𝐻

F EKL C B DJ

92

Summary
This topic has covered Kruskal’s algorithm
• Sort the edges by weight

• Create a disjoint set of the vertices

• Begin adding the edges one-by-one checking to ensure no cycles are introduced

• The result is a minimum spanning tree

• The run time is O(|E| log(|E|))

93 UNSW COMP9312_23T2

Strongly Connected
Component

UNSW COMP9312_23T2

Strongly Connected Component (SCC)

Given a directed graph, a strongly connected component is a (maximal)
subgraph in which there is a path from each vertex to another vertex.

There are three strongly connected components in this example.

95 UNSW COMP9312_23T2

Example credit: https://www.programiz.com/dsa/strongly-connected-components

OptionalComputing SCC

§ Kosaraju's Algorithm
§ Two DFS

§ Tarjans's Algorithm
§ One DFS

96 UNSW COMP9312_23T2

OptionalMotivation

Cycle <=> SCC
Search in a graph
Identify a backward edge => Find a cycle
Mark certain ancestors in the cycle

97 UNSW COMP9312_23T2

a cycle

backward edge

OptionalRunning Example (1)
num: the vertex counter

lowest: the lowest num that a vertex can reach

98 UNSW COMP9312_23T2

Example credit: https://www.baeldung.com/cs/scc-tarjans-algorithm

Process back edge (C,A),
update lowest[C], backtrack
and update lowest[B]

OptionalRunning Example (2)
§ Continue DFS search
§ Process the back edge (F,E), identify an SCC {E,F}

99 UNSW COMP9312_23T2

OptionalRunning Example (3)
DFS backtracks to D, and an SCC {D} is found

100 UNSW COMP9312_23T2

OptionalRunning Example (4)
DFS backtracks to B, then to A, find the SCC {A,B,C}

101 UNSW COMP9312_23T2

OptionalRunning Example (5)
No reachable vertices are left

102 UNSW COMP9312_23T2

OptionalRunning Example (6)
Run DFS from an unvisited vertex G

103 UNSW COMP9312_23T2

OptionalRunning Example (7)
Process back edge from J, update lowest[J] and backtrack.

104 UNSW COMP9312_23T2

OptionalCode Review

Key step: pop stack when lowest[u] = num[u]

See the provided code for details

105 UNSW COMP9312_23T2

lowest[u] = num[u]

Learning Outcome

- Know the definition of spanning tree and minimum spanning tree

- Understand the algorithms to compute the minimum spanning tree (Prim’s

algorithm, Kruskal’s algorithm with the Union-Find structure)

 - Shortest path
 Dijkstra’s algorithm, A* algorithm, Floyd-Warshall

106 UNSW COMP9312_23T2

