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Clutline

= BFS
= DFS
= Connectivity

= Topological sort




Breath-first and
depth-first traversals



Strategies

Traversals of graphs are also called searches

Applications of BFS
= Shortest Path

Applications of DFS

= Strongly connected component
= Topological Order

A quick view:
https://seanperfecto.qgithub.io/BFS-DFS-Pathfinder/
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https://seanperfecto.github.io/BFS-DFS-Pathfinder/

Breadth-first traversal

Consider implementing a breadth-first traversal on a graph:
« Choose any vertex, mark it as visited and push it onto queue
« While the queue is not empty:

« Pop to top vertex v from the queue

» For each vertex adjacent to v that has not been visited:

« Mark it visited, and
» Push it onto the queue

This continues until the queue is empty
* Note: if there are no unvisited vertices, the graph is connected
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Breadth-first traversal

An implementation Can void Graph::breadth_first_traversal( Vertex first
usSe a queue sritex (Ivl, false);
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Example

Consider this graph
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Example

Performing a breadth-first traversal
* Push the first vertex onto the queue
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Example

Performing a breadth-first traversal
 Pop Aand push B, Cand E
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Example

Performing a breadth-first traversal:
« Pop Band push D
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Example

Performing a breadth-first traversal:
* Pop C and push F
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Example

Performing a breadth-first traversal:
* Pop E and push G and H
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Example

Performing a breadth-first traversal:
« PopD
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Example

Performing a breadth-first traversal:
* PopF
A B CED,F
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Example

Performing a breadth-first traversal:

* Pop G and push |
A B CED,FG
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Example

Performing a breadth-first traversal:
* PopH
A B CEDFGH
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Example

Performing a breadth-first traversal:
* Pop |, The queue is empty: we are finished
A B CED,FG,H,I
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BFS

Coding practice~

Number of layers in BFS tree: the longest shortest distance
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Depth-First Traversal

Consider implementing a depth-first traversal on a graph:

« Choose any vertex, mark it as visited
* From that vertex:
« If there is another adjacent vertex not yet visited, go to it

« Otherwise, go back to the last vertex that has not had all of its adjacent vertices visited and
continue from there

« Continue until no visited vertices have unvisited adjacent vertices

Two implementations:
 Recursive approach (a statement in a function calls itself repeatedly)

« lterative approach (a loop repeatedly executes until the controlling condition becomes
false)
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Recursive depth-first traversal

A recursive implementation uses the call stack for memory:

visited = [False] * n

def DFS_recursive(u):
print(u)
visited[u] = True

for 1 in range(offset[u],offset[u+l]):
nbr_of u = csr_edges[i]
if visited[nbxr_of_u]: continue
DFS_recursive(nbxr_of_u)
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Iterative depth-first traversal

An iterative implementation enative
def DFs_iterative(u):

can use a stack visited = [False] * n

stack = []
stack.append(u)

while (len(stack)):
s = stack.pop()

if(visited[u]):
continue;

visited[u] = True

for i in range(offset[s],offset[s+1]):
nbx_of_s = csr_edges[i]
if visited[nbr_of_s]: continue
stack.append(nbx_of_s)
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Example

Perform a recursive depth-first traversal on this same graph
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Example

Performing a recursive depth-first traversal:
* Visit the first node
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Example

Performing a recursive depth-first traversal:
A has an unvisited neighbor
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Example

Performing a recursive depth-first traversal:
B has an unvisited neighbor
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Example

Performing a recursive depth-first traversal:
 C has an unvisited neighbor
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Example

Performing a recursive depth-first traversal:
* D has no unvisited neighbors, so we returnto C
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Example

Performing a recursive depth-first traversal:

 E has an unvisited neighbor
A B,CD,E,G
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Example

Performing a recursive depth-first traversal:

* G has an unvisited neighbor
A B,CD,E,G,I
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Example

Performing a recursive depth-first traversal:

* | has an unvisited neighbor
A B CDEG,IH

30 UNSW COMP9312_23T2



Example

Performing a recursive depth-first traversal:

» We recurse back to C which has an unvisited neighbour
A B CDEGIHF
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Example

Performing a recursive depth-first traversal:

« We recurse finding that no other nodes have unvisited neighbours
A B CDEG,ILH,F
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Comparing BFS and DFS

The order can differ greatly
 An iterative depth-first traversal may also be different again

BFS: A,B,C,E,D,F, G, H,|I Recursive DFS: A,B,C,D,E, G, |, H, F
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Quick Quiz

Can you show the result of iterative
depth-first traversal?

def DFs_iterative(u):
visited = [False] * n
stack = []
stack.append(u)

while (len(stack)):
s = stack.pop()

if(visited[u]):
continue;

visited[u] = True

for i in range(offset[s],offset[s+1]):
nbx_of_s = csr_edges[i]
if visited[nbr_of_s]: continue
stack.append(nbx_of_s)
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Example

Performing an iterative depth-first traversal:
 Push the first vertex onto the stack
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Example

Performing an iterative depth-first traversal:
 Pop Aand push B, Cand E
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Example

Performing an iterative depth-first traversal:
* Pop E and push C, G, and H

OO
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Example

Performing an iterative depth-first traversal:
* Pop H, and push |

OO —
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Example

Performing an iterative depth-first traversal:
* Pop | and push G

WIOO|O|®
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Example

Performing an iterative depth-first traversal:
* Pop G

DIOO|®

40 UNSW COMP9312_23T2



Example

Performing an iterative depth-first traversal:
* Pop G again, and skip G since it is visited

41 UNSW COMP9312_23T2



Example

Performing an iterative depth-first traversal:
« PopC,andadd B, D, F

WO O
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Example

Performing an iterative depth-first traversal:
* PopF
AEHIGCF

W O(W| O
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Example

Performing an iterative depth-first traversal:
 Pop D and add B

WO 0| @
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Example

Performing an iterative depth-first traversal:
 Pop B

WO 0| @

Pop and skip all remining vertices in the stack
since they are already visited

45 UNSW COMP9312_23T2



Complexity Analysis

We have to track which vertices have been visited requiring
oC|V|) memory

The time complexity cannot be better than and should not be
worsethan 0C|V]| + |E]|)
Connected graphs simplify thisto OC|E|) - Why?
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DFS: Recursive VS stack-based

Which one is better?

Coding practice~
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Summary

This topic covered graph traversals

Considered breadth-first and depth-first traversals

Depth-first traversals can recursive or iterative

Considered an example with both implementations

They are also called searches
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Recent Research on DFS/BFS

External Memory Algorithms
If there is no enough memory to store the whole graph,
how to compute DFS

Off-Line Storage 4‘.\ A P 7’
oy o &g&‘s’ ~ 2

¢ Ry

SIZE
https://dl.acm.org/doi/10.1145/2723372.2723740
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Recent Research on DFS/BFS ellithtl

Dynamic Graphs
When graph updates (new edge inserts or old edge removes)

Compute DFS from scratch

VS
Update DFS tree

(a) The graph G (b) A DFS-Tree T of G

https://dl.acm.org/doi/10.14778/3364324.3364329
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Recent Research on DFS/BFS ellithtl

Distributed Algorithms
The information (neighbors) of different vertices locate in different machines.

Distributed DFS algorithm is hard.
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Connectivity



Connectivity

We will use graph traversals to determine:
« Whether one vertex is connected to another
» The connected sub-graphs of a graph

First, let us determine whether one vertex is connected to another
* v;is connected to v, if there is a path from v; to v,

Strategy:
- Perform a breadth-first traversal starting at v;

« While looping, if the vertex v, ever found to be adjacent to the front of the queue, return
true

* If the loop ends, return false
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Determining Connections

Is A connected to D?
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Determining Connections

Vertex A is marked as visited and pushed onto the queue
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Determining Connections

Pop the head, A, and mark and push B, F and G
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Determining Connections

Pop B and mark and, in the left graph, mark and push H

« On the right graph, B has no unvisited adjacent vertices

57 UNSW COMP9312_23T2



Determining Connections

Popping F results in the pushing of E

58 UNSW COMP9312_23T2



Determining Connections

In either graph, G has no adjacent vertices that are unvisited
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Determining Connections

Popping H on the left graph results in C, |, D being pushed

EIC|I|D
In the left graph, A is connected to D, The queue on the right is empty. We determine
since D is in the queue A is not connected to D
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Connectivity

Coding practice~

Any better idea?
= Bidirectional search
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Connected Components

If we continued the traversal, we would find all vertices that are connected to A

Suppose we want to find the connected components of the graph

« While there are unvisited vertices:
» Select an unvisited vertex and perform a traversal on that vertex
« Each vertex that is visited in that traversal is added to the set initially containing the initial unvisited vertex

e Continue until all vertices are visited
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Connected Components

Here we start with a set of singletons
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Connected Components

The vertex A is unvisited, so we start with it
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Connected Components

Take the union of with its adjacent vertices: {A, B, H, I}
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Connected Components

As the traversal continues, we take the union of the set {G} with the set
containing H: {A, B, G, H, I}

 The traversal is finished
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Connected Components

Start another traversal with C: this defines a new set {C}
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Connected Components

We take the union of {C} and its adjacent vertex J: {C, J}
« This traversal is finished

71
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Connected Components

We start again with the set {D}
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Connected Components

K and E are adjacent to D, so take the unions creating {D, E, K}
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Connected Components

Finally, during this last traversal we find that F is adjacentto E
« Take the union of {F} with the set containing E: {D, E, F, K}

74
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Connected Components

All vertices are visited, so we are done
« There are three connected sub-graphs {A, B, G, H, I}, {C, J}, {D, E, F, K}
(B)

75
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Tracking Unvisited Vertices

The time complexity to find an unvisited vertex: o(")

How do you implement a list of unvisited vertices so as to:

« Find an unvisited vertex in O(1) time
- Remove a vertex that has been visited from this list in O(1) time?

The solution will use O(|V]) additional memory

Coding practice~
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Tracking Unvisited Vertices

Create two arrays:

* One array, unvisited, will contain the unvisited vertices
* The other, loc_in_unvisited, will contain the location of vertex v; in the first array

0 1 2 3 4 5 6 7 8 9 10
A B C D E F G H I J K

A B C D E F G H | J K
0 1 2 3 4 S 6 7 8 9 10
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Tracking Unvisited Vertices

Suppose we visit D

« Disinentry 3
0 1 2 3 4 5 6 7 8 9 10
A B C D E F G H I J K
A B C D E F G H | J K
0 1 2 3 4 ) 6 7 8 9 10
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Tracking Unvisited Vertices

Suppose we visit D

« Disinentry 3
« Copy the last unvisited vertex into this location and update the location array for this value
0 1 2 3 4 10
A B C K E F B
A B C D E K
0 1 2 4 S 3
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Tracking Unvisited Vertices

Suppose we visit G
« Gisinentry 6

10
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Tracking Unvisited Vertices

Suppose we visit G
« Gisinentry 6
« Copy the last unvisited vertex into this location and update the location array for this value

0 1 2 3 4 5 6 7 8 9 10
A B C K E F J H I

A B C D E F G H | J K
0 1 2 4 S 7 8 6 3
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Tracking Unvisited Vertices

Suppose we now visit K
 Kisinentry 3

10
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Tracking Unvisited Vertices

Suppose we now visit K
 Kisinentry 3
« Copy the last unvisited vertex into this location and update the location array for this value

0 1 2 3 4 5 6 7 8 9 10
A B C I E F J H

A B C D E F G H | J K
0 1 2 4 S 7 3 6
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Tracking Unvisited Vertices

If we want to find an unvisited vertex, we simply return the last entry of the

first array and return it

10
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Tracking Unvisited Vertices

In this case, an unvisited vertex is H

* Removing itis trivial: just decrement the count of unvisited vertices

10
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Tracking Unvisited Vertices

The actual algorithm is exceptionally fast:

« The initialization is O(|}))

» Determining if the vertex v, is visited is fast: O(1)

« Marking vertex v, as having been visited is also fast: O(1)
* Returning a vertex that is unvisited is also fast: O(1)

« The idea/structure is for any scenario that needs to remove an
item from a list (without any order limitation).
« The other option: doubly linked list

86
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Compute connected components with new data structure
We start with two arrays

0

1

2

10

A

B

C

10
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Compute connected components with new data structure

The first unvisited vertex is K
— Remove K

10
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Compute connected components with new data structure

— Visit D through the edge (K, D)

— Copy J into location 3 and update the location array

10

o =
A B C J E J
A B C D E F J K
0 1 2 4 3
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Compute connected components with new data structure

— Visit E through the edge (K, E)

— Copy | into location 4 and update the location array

10
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Compute connected components with new data structure

— Visit F through the edge (E, F)

— Copy H into location 5 and update the location array

10
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Compute connected components with new data structure

— BFS Queue is empty, one component {D, E, F, K} is found.
— Then, we visit G

— Remove G
0 1 2 3 4 5 6 7 8 9 10
A B C J I H G
A B C D E F G H | J K
0 1 2 5 4 3
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Compute connected components with new data structure

— Visit H through (G, H)

10

— Remove H
0 1 2
A B C
A B C
0 1 2
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Compute connected components with new data structure

— Visit |
— Remove |

10
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Compute connected components with new data structure

— VisitA

— Copy J into location 0 and update the location array

0 1 2 3 5 10
ﬁ'¢=\
J B C J
A B C D F K
1 2
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Compute connected components with new data structure

— Visit B

— Copy C into location 1 and update the location array

10
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Compute connected components with new data structure

— VisitC
— Remove C

10
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Compute connected components with new data structure

— Visit J
— Remove J
0 1

10
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Connected Component Detection

Coding practice~

Any other easier way to implement?
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Disjoint set data structure

Consider n elements, named 1, 2, ..., n

The disjoint set is a collection of sets of elements

Each element is in exactly one set
 sets are disjoint
« to start, each set contains one element

SetName = find ( elementName )
 returns the name of the set that contains the given element

union ( SetName1, SetName2 )
 union two sets together into a new set

How to quickly perform union and find operations?
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Disjoint set data structure

Attempt 1: Quick Find
* Array implementation. elements are 1, ..., N

« SetName[i] = name of the set containing element i

 Pseudo code:

Initialize (int N)
SetName = new int [N+1];
for (int e=1l; e<=N; e++)
SetName[e] = e;

Union (int i, int j)
for (int k=1; k<=N; k++)
if (SetName[k] == j)
SetNamel[k] = 1i;

int Find (int e)
return SetName[e];

101

Time Complexity Analysis:

Find : O(1), Union: O(n)
Note: we usually use n to denote
the number of vertices (i.e., |V|)

and use m to denote the number
of edges (i.e., |E|).
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Disjoint Set data structure

Attempt 2: Smart Union: Union by Size
 union(u, v): make smaller tree’s root point to bigger one’s root
« That is, make Vv’s root point to u’s if v's tree is smaller.
* Union(4,5), union(6,7), union(4,6) A~

6OB6 4 @
(D

Now perform union(3, 4). Smaller tree made the child node.
/2N

o
@@®@ o o @
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Disjoint Set data structure

Initialize (int N)
setsize = new int[N+1];

parent = new int [N+1]; Union by Size:
f‘;)rar(elnntt[ee]_lz’ Oe; = L G link smaller tree to larger one
setsizel[e] = 1;
Lemma: After n union ops, the tree
int Find (int e) height is at most log(n).
while (parent[e] !'= 0)

e = parent[e];
return e;

Union (int i, int j)
i = find (1) ;
j = find(3)’
i1f setsize[i] < setsize[]]
then
setsize[]j] += setsize[i];
parent[i] = J;
else
setsize[i] += setsize[]]:
parent[j] = 1 ; 103 UNSW COMP9312_23T2



Disjoint Set data structure

Time Complexity:

Find(u) takes time proportional to u’s depth in its tree.

When union(u, v) performed, the depth of u only increases if its root becomes
the child of v's root. That only happens if v's tree is larger than u’s tree.

If u's depth grows by 1, its (new) treeSize is > 2 * oldTreeSize
Each increment in depth doubles the size of u’'s tree.
After n union operations, size is at most n, so depth at most log(n).

Theorem: With Union-By-Size, we can do find in O(log n) time and union in
O(log(n)) time.
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Disjoint Set data structure

int Find (int e)
if (parent[e] == 0)
return e
else
parent[e] = Find (parent[e])
return parent|e]

* The Ultimate Union-Find: Path compression

« While performing Find, direct all nodes on the path to the root.
« Example: Find(10)
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Disjoint Set data structure

* The Ultimate Union-Find: Path compression

int Find (int e)
if (parent[e] == 0)
return e
else
parent[e] = Find (parent[e])
return parent|e]

« Any single find can still be O(log(n)).
but later finds on the same path are faster

 Union, Find: “almost linear” total time
« Amortized O(1) time for each Union or Find.
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Check Connected Components by Disjoint Sets

We would like to find the connected components by using Disjoint
Sets (Union Find).

List all edges in this graph (in alphabetical order): ®
{A,B}, {AH}, {Al}, {B,I}, {C,J}, {D,E}, {D,K}, {E,F}, @‘
{E,K}, {G,H}, {G,I}, {H,I} @
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Check Connected Components by Disjoint Sets

Going through the example again with disjoint sets. We iﬁ E&
start with eleven singletons. {A:, )
{A}, {B}, {C}, {D}, {E}, {F}, {G}, {H}, {I}, {J}, {K} {B, I}
Initialization: {C,J}

Direct all nodes on the path to the root. For {D, E}

each vertex u; € [A, L], each vertex direct {D, K}

to themselves. {E, F}

{E, K}

{G, H}

{G, 1}

® {H, 1}
@‘
A—E
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Check Connected Components by Disjoint Sets

We start by adding edge {A, B} — {A, B}
(A, B}, {C}, {D}, {E}, {F}, {G}, {H}, {1}, (U}, {K} {{/j( 'I*}}

(B, 1}

{,J)

(D, E}
&S (D, K}
(4 €10
(E.K)

(G, H)

{G, 1}
{H, 1}
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Check Connected Components by Disjoint Sets

We add edge {A, H}, {A, I} {A, B}
—> {A, H}

{A,B,H,1},{C}, {D},. {E}, {F}. {G}, {J}, {K}. — (A1)
Add {A,H}: According to the rule of Union (8,1}
by Size, make smaller tree H point to {C’J}
bigger one’s root A. {D: E}
@ o
@ {E, F}

{E, K}

H © (G, H}
Add {Al}: G, 1

@‘ {H, 1}
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Check Connected Components by Disjoint Sets

We add edge {B, 1}, {C, J} {A, B}
{A, B, H, 1}, {C, J}, {D}, {E}, {F}, {G}, {K} {AA' 'l*}

Add {B,I}: B and | are already in the tree, and they all —_— EB' Ii

point to the root. Thus, nothing will be changed. — {C,J}

{D, E}

{D, K}

{E, F}

E K

{G, H}

{G, I}

Add {C,J}:

R SRR
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Check Connected Components by Disjoint Sets

We add edge {D, E}, {D, K} (A, B}
{A, B, H, I}, {C, J}, {D, E, K}, {F}, {G} {A, H}

Add {D,E}: ?31 :;
{C, J}

@ﬁ i i =0
— (D, K

{E, F}

{E, K}

{G, H}

Add {DK}: {G, I}
{H, I}

50 o ob
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Check Connected Components by Disjoint Sets

We add edge {E, F}, {E., K} (A B}

{A, B, H, I}, {C, J},{D, E, F, K}, {G} {A, H}

. {A 1}

Add {E,F}: B

{C, J}

{D, E}

{D, K}

— {E.F)

— {E, K}

{G, H}

Add {E,K}: E, K are already pointed to root D. {G, I}

Thus, there is nothing change of adding {E,K} {H, 1}
@ﬁ @
2 N

®—®
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Check Connected Components by Disjoint Sets

We add edge {G, H}, {G, I}, {H, I} (A B}
Add {G, H}: {{AA, I|4}}
% i % (8,1

{C,J}

{D, E}

{D, K}

Add {G, I}, {H, I}: G, H, | are already pointed to root A. {E, F}

Thus, there is nothing change of adding {G, I}, {H, I}. — {{g E}}

— {G, I}

At last we get result: {A, B, G, H, I}, {C, J}, {D, E, F, K}
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Check Connected Components by Disjoint Sets

Build the index: O(|V|+|E|)
Space: O(|V|)
Good for incremental connected components maintenance~

Coding practice~
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Topological
Sort



Topological Sort

In this topic, we will discuss:
* Motivations
* The definition of a directed acyclic graph (DAG)

» Describe a topological sort and applications
» Describe the algorithm

* Do a run-time and memory analysis of the algorithm
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Motivation

Given a set of tasks with dependencies,
Is there an order in which we can complete the tasks?

Dependencies form a partial ordering

A partial ordering on a number of objects can
be represented as a directed acyclic graph (DAG)
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Directed acyclic graph (DAG)

« A directed acyclic graph (DAG) is a directed graph with

no directed cycles.

https://en.wikipedia.org/wiki/Directed_acyclic_graph
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Motivation

Cycles in dependencies can cause issues...

PAGE 3
DEPARTMENT COURSE DESCRIPTON PREREQS
COMPUTER CPSC 432 ) INTERMEDIATE COMPILER CPSC Y432
SCIENCE DESIGN, WITH A FOCUS ON
DEPENDENCY RESOLUTION.
— | —

http://xkcd.com/754/

Another example: the precedence graph in database transaction management
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Restriction of paths in DAGs

Observation:

In a DAG, glven two different vertices v; and v,
there cannot both be a path from v, to v, and a path from v to v,

Definition:
A topological sorting of the vertices in a DAG is an ordering
Vi, V2, V3, «e oy V|V]

such that if there is a path from v; to v, v; appears before v,.

121
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Definition of topological sorting

Given this DAG, a topological sort is
H C I,D,J A FB, G K E,L

™~
7D\F—~G//;E
N N
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Example

There are paths from H, C, |, D and J to F, so all these must come before F
In a topological sort

H,C,I,D,J,AJF,B,G, K E, L

A— B
C“%\/\E

/ °

o |~ K>L

Clearly, this sorting need not be unique
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Applications

The following is a task graph for getting dressed:
(briefs) (socks] (shirt) (watch)

ants tie]

wallet, keys) (belt shoes]  [jacket]

One topological sort is:
briefs, pants, wallet, keys, belt, socks, shoes, shirt, tie, jacket, iPod, watch

Another topological sort is:
briefs, socks, pants, shirt, belt, tie, jacket, wallet, keys, iPod, watch, shoes
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Topological Sort

|dea:

« Given a DAG V, make a copy W and iterate:
* Find a vertex v in W with in-degree zero (i.e., the source vertex)
» Let v be the next vertex in the topological sort
« Continue iterating with the vertex-induced sub-graph W\ {v}

Example: A— B
Possible solutions: / \ E
C.H.D,A B,I,J.F.G,EKL / \
H,1,J,C,D,F,G KL AB,E s / \K>L
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Analysis

What are the tools necessary for a topological sort?

« We must know and be able to update the in-degrees of each of
the vertices

« We could do this with a table of the in-degrees of
each of the vertices

 This requires O(|V]) memory

A— B

c- pZ .
/ \F—>G//'
-

126
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Analysis

We must iterate at least |V] times, so the run-time must

be o(|/)

We need to find vertices with in-degree zero

 We could loop through the array with each iteration
* The run time would be O(171?)

127
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Analysis

How did we do with BFS and DFS?

« Use a queue (or other container) to temporarily store those
vertices with in-degree zero

« Each time the in-degree of a vertex is decremented to
zero, push it onto the queue

128
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Analysis

What are the run times associated with the queue?
« Initially, we must scan through each of the vertices: O(|/])

« For each vertex, we will have to push onto and pop off the
queue once, also O(|V])

A— B

c- < I
/ \F%
- \K>L
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Analysis

Finally, each value in the in-degree table is associated with an edge

* Here, |[E|=16

Each of the in-degrees must be decremented to zero
The run time of these operations is O(|E|)

If we are using an adjacency matrix: O(|V]?)

If we are using an adjacency list: O(|E))

130

16

A 1
B [+ 1
C +0
D |+ 2
E |+ 4
F |+ 2
G |+ 1
H |+ O
| |+ 1
J |+ 1
K|+ 1
L | +2
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Analysis

Therefore, the run time of a topological sort is:
O(|V] + |E|) if we use an adjacency list

O(|VP?) if we use an adjacency matrix
and the additional memory requirements is O(|/])

A— B

c- pZ .
/ \F—>G//r
-

131
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Analysis

What happens if at some step, all remaining vertices
have an in-degree greater than zero?

« There must be at least one cycle within that sub-set of vertices

Consequence: we now have an o(|V] + |E|) algorithm for
determining if a graph has a cycle

A—'B

c— pZ- ~
/ \F/
/ NN

| — K— L

E

132
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Implementation

Thus, to implement a topological sort:
« Allocate memory for and initialize an array of in-degrees
* Create a queue and initialize it with all vertices that have in-degree zero

While the queue is not empty:

* Pop a vertex from the queue

« Decrement the in-degree of each neighbor

» Those neighbors whose in-degree was decremented to zero are pushed onto the queue
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Example

With the previous example, we initialize:
« The array of in-degrees
 The queue

Queue:

The queue is empty 134
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Example

Stepping through the table, push all source vertices into the queue

A 1

B 1

C 0

D 2

/A B\ T

C—-D : E Fl 2

/ \F% G| f

N H| o

H— [ — J/ K— L | 1

J 1

Queue: K 1
1 L 2
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Example

Stepping through the table, push all source vertices into the queue

m
rlxXl«— T MM OO 0| >
A A a0~ IO | A~ |~

Queue: | C | H

N
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Example

Pop the front of the queue

Tl
rX« — I MM OO0 W >
S A A O, NN IO A=

Queue: | C | H

N
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Example

Pop the front of the queue
« C has one neighbor: D

C
A— B 0
\
F=G
NN
H— | — J/ K—— L
Queue: H
t
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Example

Pop the front of the queue
« C has one neighbor: D
« Decrement its in-degree

A— B
F=G
AN
v K>L

Queue: H

139
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Example

Pop the front of the queue

Ml
r|X|l«|—|ZT|@|MmM OO | W >
A a2 (N[~ O[—~ |~

Queue: H

N
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Example

Pop the front of the queue
* H has two neighbors: D and |

A— B D 1
c—(D >

<
Q}J/ K— L |

Queue:
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Example

Pop the front of the queue
* H has two neighbors: D and |
« Decrement their in-degrees

A— B
c—(D >

<
Q}J/ K— L

Queue:

142
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Example

Pop the front of the queue
* H has two neighbors: D and |

« Decrement their in-degrees
« Both are decremented to zero, so push them onto the queue

A— B
c—(D >

<
Q}J/ K— L

Queue:

143
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Example

Pop the front of the queue
* H has two neighbors: D and |

« Decrement their in-degrees
« Both are decremented to zero, so push them onto the queue

A— B
c—(D >

<
Q}J/ K— L

Queue: D | |

144
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Example

Pop the front of the queue

Tl
rIXl«l—|IT O MM OO0 T >
A lajlolola MM |lO|lO|~ |~

Queue: D | |

N
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Example

Pop the front of the queue
* D has three neighbors: A, Eand F

A 1
D 0
E

F 2

Queue: |
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Example

Pop the front of the queue
* D has three neighbors: A, Eand F
« Decrement their in-degrees Al O

Queue: |
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Example

Pop the front of the queue
* D has three neighbors: A, Eand F

« Decrement their in-degrees Al 0
« Ais decremented to zero, so push it onto the queue

Queue: | | A
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Example

Pop the front of the queue

A 0

B 1

C 0

. D| 0

PN >0

C—D s E Fl o1
/ ~ F—'G//' G| 1
. H| o

AT P T o

J 1

Queue: | | A K 1
1 L 2
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Example

Pop the front of the queue
| has one neighbor: J

Queue: A
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Example

Pop the front of the queue
| has one neighbor: J
« Decrement its in-degree

Queue: A

151
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Example

Pop the front of the queue

| has one neighbor: J
« Decrement its in-degree

« Jis decremented to zero, so push it onto the queue

Queue:

152
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Example

Pop the front of the queue

Tl
rIXl«l—|IT O MM OO0 T >
~|lololo|la|lalw|lo|lo|—~ 0O

Queue: AlJ

N
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Example

Pop the front of the queue
* A has one neighbor: B

vy
-

C—D E
N
AT P
Queue: J
1
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Example

Pop the front of the queue
* A has one neighbor: B
« Decrement its in-degree

C—D E
/ \F{/'
\
H—'I—>J/ K>L
Queue: J

vy
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Example

Pop the front of the queue
* A has one neighbor: B

« Decrement its in-degree
« B is decremented to zero, so push it onto the queue

C— D
="
/ AN
H— | — J K> L
Queue: J | B

156
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Example

Pop the front of the queue

A 0

B 0

C 0

D 0

=B >

C—D s E Fl o1
/ ~ F—'G//' G| 1
. H| o

AT P T o
J 0

Queue: J B K 1
1 L 2
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Example

Pop the front of the queue
* J has one neighbor: F

A— B
\
C— D/ s E F | 1
/ °
HZ | (|
J 0
Queue: B
|
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Example

Pop the front of the queue
* J has one neighbor: F
« Decrement its in-degree

A— B
c— < \=E

/ °

H | K>L

Queue: B

159
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Example

Pop the front of the queue
* J has one neighbor: F

« Decrement its in-degree
* F is decremented to zero, so push it onto the queue

A— B
\
—>D/ s E F| o
/ °
H~ |%L
J 0
Queue: B F
1
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Example

Pop the front of the queue

A 0

B 0

C 0

D 0

/A B\ E| 3

C—-D s E F| 0
/ ~ F—'G//' G| f
. H| o

AT Vi T o
J 0

Queue: B | F K 1
1 L 2
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Example

Pop the front of the queue
* B has one neighbor: E

B 0
PG T
C—-D :
N
PINE
H— [— J
Queue: F
1
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Example

Pop the front of the queue
* B has one neighbor: E
« Decrement its in-degree

Queue: F
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Example

Pop the front of the queue

Tl
rIXl«l—|IT O MM OO0 T >
~|lololo|la|lo/dvV/Oo|loo o

Queue: F

N
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Example

Pop the front of the queue
* F has three neighbors: E, G and K

Queue: K 1

165 UNSW COMP9312_23T2



Example

Pop the front of the queue
* F has three neighbors: E, G and K
« Decrement their in-degrees

Queue:
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Example

Pop the front of the queue
* F has three neighbors: E, G and K

« Decrement their in-degrees

G and K are decremented to zero,
so push them onto the queue

Queue: G| K K 0
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Example

Pop the front of the queue

\‘?
O
N\ /N
L
/|
r‘l,-l
rIxX«|—|IZ®@MMOO|w| >
o|lo|lo|lo|o|lo|~ 0|0 |O|O

N

Queue: G| K
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Example

Pop the front of the queue
* G has two neighbors: E and L

_A—B L
C—-D
/ \F . —
H— I—'J/
Queue: K
1 L 2
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Example

Pop the front of the queue
* G has two neighbors: E and L
« Decrement their in-degrees

Queue:

1
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Example

Pop the front of the queue
* G has two neighbors: E and L

« Decrement their in-degrees
« E is decremented to zero, so push it onto the queue

/A—>B
oS
H— | — J/ ~

Queue: KIlE

171
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Example

Pop the front of the queue

A 0

B 0

C 0

D 0

/A B\ E| 0

C—-D s E F| 0
/ ~ F—'G//' G| O
. H| o

AT Vi T o
J 0

Queue: K| E K 0
1 L 1
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Example

Pop the front of the queue
« K has one neighbors: L

- \
/ \F//'

N0
Queue: K 0

1 L 1
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Example

Pop the front of the queue
« K has one neighbors: L
« Decrement its in-degree

™~
/
\®>®

Queue:

174
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Example

Pop the front of the queue

« K has one neighbors: L
« Decrement its in-degree

» L is decremented to zero, so push it onto the queue

Queue:

A

_.B\;E
=

\
N/
l

175
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Example

Pop the front of the queue

A 0

B 0

C 0

D 0

/A B\ E| 0

C—-D s E F| 0
/ ~ F—'G//' G| O
. H| o

AT Vi T o
J 0

Queue: E | L K 0
1 L 0
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Example

Pop the front of the queue
* E has no neighbors—it is a sink

A— B
e \ E| o
}D\F%@
VAT N
Queue: L
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Example

Pop the front of the queue

A 0

B 0

C 0

D 0

PN >0

C—-D s E F| o
/ ~ F—'G//' G| 0
. H| o

H— | — J/ K—— | 0
J 0

Queue: L K 0
1 L 0
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Example

Pop the front of the queue
» L has no neighbors—it is also a sink

A

P

E

C—~D
/ F\{/'
H> 1= J K>®

1 L 0
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Example

The queue is empty, so we are done

Tl
rIXl«l—|IT O MM OO0 T >
ololololololo|lolo|lo|lo

Queue:

o
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Example

The enqueue order is the topological sorting

}D\F%//;E
T \K>L
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Exercise

Can you compute the topological sort of the following graph?

~E

A\/D\ /

B/C
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Exercise

Initialize the array of in-degrees and the queue

A 0
A —E B| 1
\ C 2
D D 1
/> el

C

B/

Queue:

t

The queue is empty
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Exercise

Push A onto the queue

A 0
A —E B | 1
\ C 2
D D 1
s =
C
B/
Queue: | A
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Exercise

Pop the front of the queue
— A has two neighbors: D and E

A 0
A E
D
/ E| 2
C
B/
Queue:

185 UNSW COMP9312_23T2



Exercise

Pop the front of the queue
— A has two neighbors: D and E

— Decrement their in-degree A 0
A E
D 0
E
/ C
B
Queue:
1
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Exercise

Pop the front of the queue
— A has two neighbors: D and E

— Decrement their in-degree A 0
A ~E
D 0
E
/ C
B
Queue: D
D is decremented to zero, so push it onto the queue 1
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Exercise

Pop the front of the queue
— D has two neighbors: B and C

(@

2
(D) D| o

Queue:
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Exercise

Pop the front of the queue
— D has two neighbors: B and C
— Decrement their in-degree

A

(@

1
(D) D| o
C
(B
Queue:
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Exercise

Pop the front of the queue
— D has two neighbors: B and C
— Decrement their in-degree

N ' o
.

C

@ B

Queue:

A

(@

B is decremented to zero, so push it onto the queue
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Exercise

Pop the front of the queue
— B has one neighbor: C

.

Queue:
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Exercise

Pop the front of the queue
— B has one neighbor: C
— Decrement its in-degree

.

Queue:
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Exercise

Pop the front of the queue
— B has one neighbor: C
— Decrement its in-degree

.

Queue: C

C is decremented to zero, so push it onto the queue

193 UNSW COMP9312_23T2



Exercise

Pop the front of the queue
— C has one neighbor: E

\ C 0
D

Y, ;.

Queue:

194 UNSW COMP9312_23T2



Exercise

Pop the front of the queue
— C has one neighbor: E
— Decrement its in-degree

\ C 0
D

Y, Ny

Queue:

A
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Exercise

Pop the front of the queue
— C has one neighbor: E
— Decrement its in-degree

\ C 0
D

Y, Ny

B
E

Queue:

A

E is decremented to zero, so push it onto the queue

196 UNSW COMP9312_23T2



Exercise

Pop the front of the queue
— E has no neighbors

A\D
[

Queue:
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Exercise

The queue is empty, so we are done

A 0
A -~ E B| 0
\ C 0
D D 0
/> e

C

B/

Queue:
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Learning outcomes

« Understand the BFS and DFS algorithms

« Understand the algorithms for computing connected

components (using BFS and Disjoint-set)

* Know the concept of topological sort and how to compute it
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