
Graph Traversal
COMP9312_23T2

UNSW COMP9312_23T2

Outline

§ BFS

§ DFS

§ Connectivity

§ Topological sort

UNSW COMP9312_23T2

Breath-first and
depth-first traversals

Strategies

4 UNSW COMP9312_23T2

Traversals of graphs are also called searches
Applications of BFS
§ Shortest Path
§ …

Applications of DFS
§ Strongly connected component
§ Topological Order
§ …

A quick view:
https://seanperfecto.github.io/BFS-DFS-Pathfinder/

https://seanperfecto.github.io/BFS-DFS-Pathfinder/

Breadth-first traversal
Consider implementing a breadth-first traversal on a graph:
• Choose any vertex, mark it as visited and push it onto queue
• While the queue is not empty:

• Pop to top vertex v from the queue
• For each vertex adjacent to v that has not been visited:

• Mark it visited, and
• Push it onto the queue

This continues until the queue is empty
• Note: if there are no unvisited vertices, the graph is connected

5 UNSW COMP9312_23T2

Breadth-first traversal

6 UNSW COMP9312_23T2

An implementation can
use a queue

Example

Consider this graph

7 UNSW COMP9312_23T2

Example

8 UNSW COMP9312_23T2

Performing a breadth-first traversal
• Push the first vertex onto the queue

A

Example

Performing a breadth-first traversal
• Pop A and push B, C and E

A

9 UNSW COMP9312_23T2

B C E

Example

Performing a breadth-first traversal:
• Pop B and push D

A, B

10 UNSW COMP9312_23T2

C E D

E D F

Example

Performing a breadth-first traversal:
• Pop C and push F

A, B, C

11 UNSW COMP9312_23T2

D F G H

Example

Performing a breadth-first traversal:
• Pop E and push G and H

A, B, C, E

12 UNSW COMP9312_23T2

F G H

Example

Performing a breadth-first traversal:
• Pop D

A, B, C, E, D

13 UNSW COMP9312_23T2

G H

Example

Performing a breadth-first traversal:
• Pop F

A, B, C, E, D, F

14 UNSW COMP9312_23T2

H I

Example

Performing a breadth-first traversal:
• Pop G and push I

A, B, C, E, D, F, G

15 UNSW COMP9312_23T2

I

Example

Performing a breadth-first traversal:
• Pop H

A, B, C, E, D, F, G, H

16 UNSW COMP9312_23T2

Example

Performing a breadth-first traversal:
• Pop I, The queue is empty: we are finished

A, B, C, E, D, F, G, H, I

17 UNSW COMP9312_23T2

BFS

Coding practice~

Number of layers in BFS tree: the longest shortest distance

18 UNSW COMP9312_23T2

Depth-First Traversal
Consider implementing a depth-first traversal on a graph:
• Choose any vertex, mark it as visited
• From that vertex:

• If there is another adjacent vertex not yet visited, go to it
• Otherwise, go back to the last vertex that has not had all of its adjacent vertices visited and

continue from there
• Continue until no visited vertices have unvisited adjacent vertices

Two implementations:
• Recursive approach (a statement in a function calls itself repeatedly)
• Iterative approach (a loop repeatedly executes until the controlling condition becomes

false)

19 UNSW COMP9312_23T2

Recursive depth-first traversal

A recursive implementation uses the call stack for memory:

20 UNSW COMP9312_23T2

Iterative depth-first traversal

An iterative implementation
can use a stack

21 UNSW COMP9312_23T2

Example

Perform a recursive depth-first traversal on this same graph

22 UNSW COMP9312_23T2

Example

Performing a recursive depth-first traversal:
• Visit the first node

A

23 UNSW COMP9312_23T2

Example

Performing a recursive depth-first traversal:
• A has an unvisited neighbor

A, B

24 UNSW COMP9312_23T2

Example

Performing a recursive depth-first traversal:
• B has an unvisited neighbor

A, B, C

25 UNSW COMP9312_23T2

Example

Performing a recursive depth-first traversal:
• C has an unvisited neighbor

A, B, C, D

26 UNSW COMP9312_23T2

Example

Performing a recursive depth-first traversal:
• D has no unvisited neighbors, so we return to C

A, B, C, D, E

27 UNSW COMP9312_23T2

Example

Performing a recursive depth-first traversal:
• E has an unvisited neighbor

A, B, C, D, E, G

28 UNSW COMP9312_23T2

Example

Performing a recursive depth-first traversal:
• G has an unvisited neighbor

A, B, C, D, E, G, I

29 UNSW COMP9312_23T2

Example

Performing a recursive depth-first traversal:
• I has an unvisited neighbor

A, B, C, D, E, G, I, H

30 UNSW COMP9312_23T2

Example

Performing a recursive depth-first traversal:
• We recurse back to C which has an unvisited neighbour

A, B, C, D, E, G, I, H, F

31 UNSW COMP9312_23T2

Example

Performing a recursive depth-first traversal:
• We recurse finding that no other nodes have unvisited neighbours

A, B, C, D, E, G, I, H, F

32 UNSW COMP9312_23T2

Comparing BFS and DFS

The order can differ greatly
• An iterative depth-first traversal may also be different again

33 UNSW COMP9312_23T2

Recursive DFS: A, B, C, D, E, G, I, H, FBFS: A, B, C, E, D, F, G, H, I

Quick Quiz

34 UNSW COMP9312_23T2

B

A

E

C

D

F

G

I

H

Can you show the result of iterative
depth-first traversal?

Example

Performing an iterative depth-first traversal:
• Push the first vertex onto the stack

35 UNSW COMP9312_23T2

A

B

A

E

C

D

F

G

I

H

Example

Performing an iterative depth-first traversal:
• Pop A and push B, C and E

A

36 UNSW COMP9312_23T2

E
C
B

B

A

E

C

D

F

G

I

H

Example

Performing an iterative depth-first traversal:
• Pop E and push C, G, and H

A, E

37 UNSW COMP9312_23T2

H
G
C
C
B

B

A

E

C

D

F

G

I

H

Example

Performing an iterative depth-first traversal:
• Pop H, and push I

A, E, H

38 UNSW COMP9312_23T2

I
G
C
C
B

B

A

E

C

D

F

G

I

H

Example

Performing an iterative depth-first traversal:
• Pop I and push G

A, E, H, I

39 UNSW COMP9312_23T2

G
G
C
C
B

B

A

E

C

D

F

G

I

H

Example

Performing an iterative depth-first traversal:
• Pop G

A, E, H, I, G

40 UNSW COMP9312_23T2

G
C
C
B

B

A

E

C

D

F

G

I

H

Example

Performing an iterative depth-first traversal:
• Pop G again, and skip G since it is visited

A, E, H, I, G

41 UNSW COMP9312_23T2

C
C
B

B

A

E

C

D

F

G

I

H

Example

Performing an iterative depth-first traversal:
• Pop C, and add B, D, F

A, E, H, I, G, C

42 UNSW COMP9312_23T2

F
D
B
C
B

B

A

E

C

D

F

G

I

H

Example

Performing an iterative depth-first traversal:
• Pop F

A, E, H, I, G, C, F

43 UNSW COMP9312_23T2

D
B
C
B

B

A

E

C

D

F

G

I

H

Example

Performing an iterative depth-first traversal:
• Pop D and add B

A, E, H, I, G, C, F, D

44 UNSW COMP9312_23T2

B
B
C
B

B

A

E

C

D

F

G

I

H

Example

Performing an iterative depth-first traversal:
• Pop B

A, E, H, I, G, C, F, D, B

45 UNSW COMP9312_23T2

B
B
C
B

B

A

E

C

D

F

G

I

H

Pop and skip all remining vertices in the stack
since they are already visited

Complexity Analysis

We have to track which vertices have been visited requiring
O(|V|) memory

The time complexity cannot be better than and should not be
worse than O(|V| + |E|)

Connected graphs simplify this to O(|E|) – Why?

46 UNSW COMP9312_23T2

DFS: Recursive VS stack-based

Which one is better?

Coding practice~

47 UNSW COMP9312_23T2

Summary
This topic covered graph traversals

• Considered breadth-first and depth-first traversals

• Depth-first traversals can recursive or iterative

• Considered an example with both implementations

• They are also called searches

48 UNSW COMP9312_23T2

OptionalRecent Research on DFS/BFS

External Memory Algorithms
If there is no enough memory to store the whole graph,
how to compute DFS

49 UNSW COMP9312_23T2

https://dl.acm.org/doi/10.1145/2723372.2723740

OptionalRecent Research on DFS/BFS

Dynamic Graphs
When graph updates (new edge inserts or old edge removes)

Compute DFS from scratch
VS
Update DFS tree

50 UNSW COMP9312_23T2

Fully Dynamic Depth-First Search in Directed Graphs

Bohua Yang\, Dong Wen\, Lu Qin\, Ying Zhang\, Xubo Wang\, and Xuemin Lin§

\Centre for Artificial Intelligence, University of Technology Sydney, Australia
§The University of New South Wales, Australia

\bohua.yang@student.uts.edu.au; {dong.wen, lu.qin, ying.zhang, xubo.wang}@uts.edu.au;
§lxue@cse.unsw.edu.au;

ABSTRACT
Depth-first search (DFS) is a fundamental and important al-
gorithm in graph analysis. It is the basis of many graph algo-
rithms such as computing strongly connected components,
testing planarity, and detecting biconnected components.
The result of a DFS is normally shown as a DFS-Tree. Given
the frequent updates in many real-world graphs (e.g., social
networks and communication networks), we study the prob-
lem of DFS-Tree maintenance in dynamic directed graphs.
In the literature, most works focus on the DFS-Tree main-
tenance problem in undirected graphs and directed acyclic
graphs. However, their methods cannot easily be applied
in the case of general directed graphs. Motivated by this,
we propose a framework and corresponding algorithms for
both edge insertion and deletion in general directed graphs.
We further give several optimizations to speed up the algo-
rithms. We conduct extensive experiments on 12 real-world
datasets to show the efficiency of our proposed algorithms.
PVLDB Reference Format:
Bohua Yang, Dong Wen, Lu Qin, Ying Zhang, Xubo Wang and

Xuemin Lin. Fully Dynamic Depth-First Search in Directed Graphs.

PVLDB, (): xxxx-yyyy, .

DOI:

1. INTRODUCTION
Depth-first search (DFS)1 is an algorithm to traverse a

graph. It searches the vertices along a graph as far as pos-
sible in each branch before backtracking. The process of a
DFS is naturally represented as a search spanning tree fol-
lowing the depth-first order, named the DFS-Tree. Given
a graph G in Figure 1(a), a DFS-Tree T of G is shown in
Figure 1(b). The time complexity for performing a DFS
traversal and generating a DFS-Tree in a graph G(V,E) is
O(|V |+ |E|) [20].

DFS is a fundamental algorithm in graph analysis and
is the basis for efficiently solving numerous graph problems,
such as testing graph reachability [19,24], detecting strongly
1https://en.wikipedia.org/wiki/Depth-first_search

This work is licensed under the Creative Commons Attribution-

NonCommercial-NoDerivatives 4.0 International License. To view a copy

of this license, visit http://creativecommons.org/licenses/by-nc-nd/4.0/. For

any use beyond those covered by this license, obtain permission by emailing

info@vldb.org. Copyright is held by the owner/author(s). Publication rights

licensed to the VLDB Endowment.

Proceedings of the VLDB Endowment, Vol. , No.

ISSN 2150-8097.

DOI:

v10

v0v1

v2 v3v4

v5
v7

v6 v12v8

v11

v9

v13 v14

v18

v15

v16

v17

(a) The graph G

v10

!
v0

v1

v2

v3
v4
v5

v7
v6

v12

v8
v11

v9

v13

v14

v18

v15

v16

v17

(b) A DFS-Tree T of G

Figure 1: An example graph G and its DFS-Tree T .

� is a virtual root connecting all vertices in G.

connected components [9,17,20], detecting biconnected com-
ponents [11], finding graph bridges [21], finding paths, de-
tecting cycles [23], testing bipartiteness, testing graph pla-
narity [8,12], and topological sorting [22]. These algorithms
perform DFS traversal as a subroutine. They require access
to vertices in the depth-first order.

In many real-world applications, graphs dynamically up-
date over time. Given the importance of DFS, the DFS-Tree
maintenance problem in dynamic directed graphs is insuf-
ficiently studied. In this paper, we examine this problem,
which is to update the DFS-Tree for an inserted or deleted
edge. The aforementioned applications of DFS benefit from
this study. Specifically, in many graph problems such as
computing strongly connected components [20], biconnected
components [11], and finding graph bridges [21], a key step
is to compute the reachable ancestor with the lowest depth
of each vertex in the DFS-Tree. Based on this study, we
can simply finish this task by directly tracking the updated
DFS-Tree of the graph. For example, in detecting bicon-
nected components, it is required to compute a DFS-Tree of
the graph and then traverse the tree to get the shallowest po-
sition that each vertex can reach. When the graph updates,
we can derive an updated DFS-Tree instead of performing
the DFS traversal from scratch. We can also simultaneously
maintain the interval label (discovery time and finish time)
of each vertex as a byproduct in the DFS-Tree. The interval
label is used in several works [19, 24] as a part of the index
to test the graph reachability. These works filter out the
queries if two vertices are connected in the tree, and it only
takes constant time to check the reachability in the tree us-
ing the interval labels. Based on the study in this paper,
we can immediately derive the updated interval labels when
the graph updates instead of rerunning DFS. In addition, in
puzzle problems such as mazes, users can check the updated

1

https://dl.acm.org/doi/10.14778/3364324.3364329

OptionalRecent Research on DFS/BFS

Distributed Algorithms
The information (neighbors) of different vertices locate in different machines.

Distributed DFS algorithm is hard.

51 UNSW COMP9312_23T2

Connectivity

UNSW COMP9312_23T2

Connectivity
We will use graph traversals to determine:
• Whether one vertex is connected to another
• The connected sub-graphs of a graph

First, let us determine whether one vertex is connected to another
• vj is connected to vk if there is a path from vj to vk

Strategy:
• Perform a breadth-first traversal starting at vj
• While looping, if the vertex vk ever found to be adjacent to the front of the queue, return

true
• If the loop ends, return false

53 UNSW COMP9312_23T2

Determining Connections

Is A connected to D?

54 UNSW COMP9312_23T2

Determining Connections

Vertex A is marked as visited and pushed onto the queue

55 UNSW COMP9312_23T2

A A

Determining Connections

Pop the head, A, and mark and push B, F and G

56 UNSW COMP9312_23T2

B F G B F G

Determining Connections
Pop B and mark and, in the left graph, mark and push H
• On the right graph, B has no unvisited adjacent vertices

57 UNSW COMP9312_23T2

F G H F G

Determining Connections

Popping F results in the pushing of E

58 UNSW COMP9312_23T2

G H E G E

Determining Connections

In either graph, G has no adjacent vertices that are unvisited

59 UNSW COMP9312_23T2

H E E

Determining Connections

Popping H on the left graph results in C, I, D being pushed

60 UNSW COMP9312_23T2

E C I D

In the left graph, A is connected to D,
since D is in the queue

The queue on the right is empty. We determine
A is not connected to D

Connectivity

Coding practice~

Any better idea?
§ Bidirectional search

64 UNSW COMP9312_23T2

Connected Components
If we continued the traversal, we would find all vertices that are connected to A

Suppose we want to find the connected components of the graph
• While there are unvisited vertices:

• Select an unvisited vertex and perform a traversal on that vertex
• Each vertex that is visited in that traversal is added to the set initially containing the initial unvisited vertex

• Continue until all vertices are visited

65 UNSW COMP9312_23T2

Connected Components

A B C D E F G H I J K

A B C D E F G H I J K

Here we start with a set of singletons

66 UNSW COMP9312_23T2

Connected Components
The vertex A is unvisited, so we start with it

A B C D E F G H I J K

A B C D E F G H I J K

67 UNSW COMP9312_23T2

Connected Components
Take the union of with its adjacent vertices: {A, B, H, I}

A B C D E F G H I J K

A A C D E F G A A J K

68 UNSW COMP9312_23T2

Connected Components
As the traversal continues, we take the union of the set {G} with the set
containing H: {A, B, G, H, I}
• The traversal is finished

A B C D E F G H I J K

A A C D E F A A A J K

69 UNSW COMP9312_23T2

Connected Components
Start another traversal with C: this defines a new set {C}

A B C D E F G H I J K

A A C D E F A A A J K

70 UNSW COMP9312_23T2

Connected Components
We take the union of {C} and its adjacent vertex J: {C, J}
• This traversal is finished

A B C D E F G H I J K

A A C D E F A A A C K

71 UNSW COMP9312_23T2

Connected Components
We start again with the set {D}

A B C D E F G H I J K

A A C D E F A A A C K

72 UNSW COMP9312_23T2

Connected Components
K and E are adjacent to D, so take the unions creating {D, E, K}

A B C D E F G H I J K

A A C D D F A A A C D

73 UNSW COMP9312_23T2

Connected Components
Finally, during this last traversal we find that F is adjacent to E
• Take the union of {F} with the set containing E: {D, E, F, K}

A B C D E F G H I J K

A A C D D D A A A C D

74 UNSW COMP9312_23T2

Connected Components
All vertices are visited, so we are done
• There are three connected sub-graphs {A, B, G, H, I}, {C, J}, {D, E, F, K}

A B C D E F G H I J K

A A C D D D A A A C D

75 UNSW COMP9312_23T2

Tracking Unvisited Vertices

How do you implement a list of unvisited vertices so as to:
• Find an unvisited vertex in O(1) time
• Remove a vertex that has been visited from this list in O(1) time?

The solution will use O(|V|) additional memory

Coding practice~

O(|V|)The time complexity to find an unvisited vertex:

76 UNSW COMP9312_23T2

Tracking Unvisited Vertices
Create two arrays:
• One array, unvisited, will contain the unvisited vertices
• The other, loc_in_unvisited, will contain the location of vertex vi in the first array

0 1 2 3 4 5 6 7 8 9 10

A B C D E F G H I J K

A B C D E F G H I J K

0 1 2 3 4 5 6 7 8 9 10

77 UNSW COMP9312_23T2

Tracking Unvisited Vertices
Suppose we visit D
• D is in entry 3

0 1 2 3 4 5 6 7 8 9 10

A B C D E F G H I J K

A B C D E F G H I J K

0 1 2 3 4 5 6 7 8 9 10

78 UNSW COMP9312_23T2

Tracking Unvisited Vertices
Suppose we visit D
• D is in entry 3
• Copy the last unvisited vertex into this location and update the location array for this value

0 1 2 3 4 5 6 7 8 9 10

A B C K E F G H I J

A B C D E F G H I J K

0 1 2 3 4 5 6 7 8 9 3

79 UNSW COMP9312_23T2

Tracking Unvisited Vertices
Suppose we visit G
• G is in entry 6

0 1 2 3 4 5 6 7 8 9 10

A B C K E F G H I J

A B C D E F G H I J K

0 1 2 3 4 5 6 7 8 9 3

80 UNSW COMP9312_23T2

Tracking Unvisited Vertices
Suppose we visit G
• G is in entry 6
• Copy the last unvisited vertex into this location and update the location array for this value

0 1 2 3 4 5 6 7 8 9 10

A B C K E F J H I

A B C D E F G H I J K

0 1 2 3 4 5 6 7 8 6 3

81 UNSW COMP9312_23T2

Tracking Unvisited Vertices
Suppose we now visit K
• K is in entry 3

0 1 2 3 4 5 6 7 8 9 10

A B C K E F J H I

A B C D E F G H I J K

0 1 2 3 4 5 6 7 8 6 3

82 UNSW COMP9312_23T2

Tracking Unvisited Vertices
Suppose we now visit K
• K is in entry 3
• Copy the last unvisited vertex into this location and update the location array for this value

0 1 2 3 4 5 6 7 8 9 10

A B C I E F J H

A B C D E F G H I J K

0 1 2 3 4 5 6 7 3 6 3

83 UNSW COMP9312_23T2

Tracking Unvisited Vertices
If we want to find an unvisited vertex, we simply return the last entry of the
first array and return it

0 1 2 3 4 5 6 7 8 9 10

A B C I E F J H

A B C D E F G H I J K

0 1 2 3 4 5 6 7 3 6 3

84 UNSW COMP9312_23T2

Tracking Unvisited Vertices
In this case, an unvisited vertex is H
• Removing it is trivial: just decrement the count of unvisited vertices

0 1 2 3 4 5 6 7 8 9 10

A B C I E F J

A B C D E F G H I J K

0 1 2 3 4 5 6 7 3 6 3

85 UNSW COMP9312_23T2

Tracking Unvisited Vertices
The actual algorithm is exceptionally fast:
• The initialization is O(|V|)
• Determining if the vertex vk is visited is fast: O(1)
• Marking vertex vk as having been visited is also fast: O(1)
• Returning a vertex that is unvisited is also fast: O(1)

• The idea/structure is for any scenario that needs to remove an
item from a list (without any order limitation).

• The other option: doubly linked list

86 UNSW COMP9312_23T2

We start with two arrays
Compute connected components with new data structure

0 1 2 3 4 5 6 7 8 9 10

A B C D E F G H I J K

A B C D E F G H I J K

0 1 2 3 4 5 6 7 8 9 10

87 UNSW COMP9312_23T2

The first unvisited vertex is K
– Remove K

Compute connected components with new data structure

0 1 2 3 4 5 6 7 8 9 10

A B C D E F G H I J K

A B C D E F G H I J K

0 1 2 3 4 5 6 7 8 9 10

B

A

H I

G

J

C

K
D

EF

88 UNSW COMP9312_23T2

– Visit D through the edge (K, D)
– Copy J into location 3 and update the location array

0 1 2 3 4 5 6 7 8 9 10

A B C J E F G H I J

A B C D E F G H I J K

0 1 2 3 4 5 6 7 8 3 10

B

A

H I

G

J

C

K
D

EF

Compute connected components with new data structure

89 UNSW COMP9312_23T2

– Visit E through the edge (K, E)
– Copy I into location 4 and update the location array

0 1 2 3 4 5 6 7 8 9 10

A B C J I F G H I

A B C D E F G H I J K

0 1 2 3 4 5 6 7 4 3 10

B

A

H I

G

J

C

K
D

EF

Compute connected components with new data structure

90 UNSW COMP9312_23T2

– Visit F through the edge (E, F)
– Copy H into location 5 and update the location array

0 1 2 3 4 5 6 7 8 9 10

A B C J I H G H

A B C D E F G H I J K

0 1 2 3 4 5 6 5 4 3 10

B

A

H I

G

J

C

K
D

EF

Compute connected components with new data structure

91 UNSW COMP9312_23T2

– BFS Queue is empty, one component {D, E, F, K} is found.
– Then, we visit G
– Remove G

0 1 2 3 4 5 6 7 8 9 10

A B C J I H G

A B C D E F G H I J K

0 1 2 3 4 5 6 5 4 3 10

B

A

H I

G

J

C

K
D

EF

Compute connected components with new data structure

92 UNSW COMP9312_23T2

– Visit H through (G, H)
– Remove H

0 1 2 3 4 5 6 7 8 9 10

A B C J I H

A B C D E F G H I J K

0 1 2 3 4 5 6 5 4 3 10

B

A

H I

G

J

C

K
D

EF

Compute connected components with new data structure

93 UNSW COMP9312_23T2

– Visit I
– Remove I

0 1 2 3 4 5 6 7 8 9 10

A B C J I

A B C D E F G H I J K

0 1 2 3 4 5 6 5 4 3 10

B

A

H I

G

J

C

K
D

EF

Compute connected components with new data structure

94 UNSW COMP9312_23T2

– Visit A
– Copy J into location 0 and update the location array

0 1 2 3 4 5 6 7 8 9 10

J B C J

A B C D E F G H I J K

0 1 2 3 4 5 6 5 4 0 10

B

A

H I

G

J

C

K
D

EF

Compute connected components with new data structure

95 UNSW COMP9312_23T2

– Visit B
– Copy C into location 1 and update the location array

0 1 2 3 4 5 6 7 8 9 10

J C C

A B C D E F G H I J K

0 1 1 3 4 5 6 5 4 0 10

B

A

H I

G

J

C

K
D

EF

Compute connected components with new data structure

96 UNSW COMP9312_23T2

– Visit C
– Remove C

0 1 2 3 4 5 6 7 8 9 10

J C

A B C D E F G H I J K

0 1 1 3 4 5 6 5 4 0 10

B

A

H I

G

J

C

K
D

EF

Compute connected components with new data structure

97 UNSW COMP9312_23T2

– Visit J
– Remove J

0 1 2 3 4 5 6 7 8 9 10

A B C D E F G H I J K

0 1 1 3 4 5 6 5 4 0 10

B

A

H I

G

J

C

K
D

EF

Compute connected components with new data structure

98 UNSW COMP9312_23T2

Connected Component Detection
Coding practice~

Any other easier way to implement?

99 UNSW COMP9312_23T2

Disjoint set data structure
• Consider n elements, named 1, 2, …, n

• The disjoint set is a collection of sets of elements

• Each element is in exactly one set
• sets are disjoint
• to start, each set contains one element

• SetName = find (elementName)
• returns the name of the set that contains the given element

• union (SetName1, SetName2)
• union two sets together into a new set

How to quickly perform union and find operations?
100 UNSW COMP9312_23T2

Disjoint set data structure
Attempt 1: Quick Find

• Array implementation. elements are 1, …, N
• SetName[i] = name of the set containing element i
• Pseudo code:

Initialize(int N)
 SetName = new int [N+1];
 for (int e=1; e<=N; e++)
 SetName[e] = e;

Union(int i, int j)
 for (int k=1; k<=N; k++)
 if (SetName[k] == j)
 SetName[k] = i;

int Find(int e)
 return SetName[e];

Time Complexity Analysis:

 Find : O(1), Union : O(n)

Note: we usually use n to denote
the number of vertices (i.e., |V|)
and use m to denote the number
of edges (i.e., |E|).

101 UNSW COMP9312_23T2

Disjoint Set data structure
Attempt 2: Smart Union: Union by Size

• union(u, v): make smaller tree’s root point to bigger one’s root
• That is, make v’s root point to u’s if v’s tree is smaller.
• Union(4,5), union(6,7), union(4,6)

 Now perform union(3, 4). Smaller tree made the child node.

4

5 6

7

0 1 2 3

0 1 2

4

5 6

7

3

102 UNSW COMP9312_23T2

Disjoint Set data structure

Initialize(int N)
 setsize = new int[N+1];
 parent = new int [N+1];
 for (int e=1; e <= N; e++)
 parent[e] = 0;
 setsize[e] = 1;

int Find(int e)
 while (parent[e] != 0)
 e = parent[e];
 return e;

Union(int i, int j)
 i = find(i);
 j = find(j)’
 if setsize[i] < setsize[j]
 then
 setsize[j] += setsize[i];
 parent[i] = j;
 else
 setsize[i] += setsize[j];
 parent[j] = i ;

Union by Size:
link smaller tree to larger one

Lemma: After n union ops, the tree
height is at most log(n).

103 UNSW COMP9312_23T2

Disjoint Set data structure

• Find(u) takes time proportional to u’s depth in its tree.

• When union(u, v) performed, the depth of u only increases if its root becomes
the child of v’s root. That only happens if v’s tree is larger than u’s tree.

• If u’s depth grows by 1, its (new) treeSize is > 2 * oldTreeSize
 Each increment in depth doubles the size of u’s tree.
 After n union operations, size is at most n, so depth at most log(n).

• Theorem: With Union-By-Size, we can do find in O(log n) time and union in
O(log(n)) time.

Time Complexity:

104 UNSW COMP9312_23T2

Disjoint Set data structure
• The Ultimate Union-Find: Path compression

• While performing Find, direct all nodes on the path to the root.
• Example: Find(10)

int Find(int e)
 if (parent[e] == 0)
 return e
 else
 parent[e] = Find(parent[e])
 return parent[e]

0
2 4

6

1

3 5

7

8

9 10

11

0

2 4

6

1

3 5

7

8

9

10

11

105 UNSW COMP9312_23T2

Disjoint Set data structure
• The Ultimate Union-Find: Path compression

• Any single find can still be O(log(n)),
 but later finds on the same path are faster

• Union, Find: “almost linear” total time
• Amortized O(1) time for each Union or Find.

int Find(int e)
 if (parent[e] == 0)
 return e
 else
 parent[e] = Find(parent[e])
 return parent[e]

106 UNSW COMP9312_23T2

Check Connected Components by Disjoint Sets

We would like to find the connected components by using Disjoint
Sets (Union Find).

List all edges in this graph (in alphabetical order):

{A,B}, {A,H}, {A,I}, {B,I}, {C,J}, {D,E}, {D,K}, {E,F},
{E,K}, {G,H}, {G,I}, {H,I}

107 UNSW COMP9312_23T2

{A, B}
{A, H}
{A, I}
{B, I}
{C, J}
{D, E}
{D, K}
{E, F}
{E, K}
{G, H}
{G, I}
{H, I}

{A}, {B}, {C}, {D}, {E}, {F}, {G}, {H}, {I}, {J}, {K}

Initialization:
Direct all nodes on the path to the root. For
each vertex 𝑢! ∈ [𝐴, 𝐿], each vertex direct
to themselves.

𝑢!

Check Connected Components by Disjoint Sets
Going through the example again with disjoint sets. We
start with eleven singletons.

108 UNSW COMP9312_23T2

We start by adding edge {A, B} {A, B}
{A, H}
{A, I}
{B, I}
{C, J}
{D, E}
{D, K}
{E, F}
{E, K}
{G, H}
{G, I}
{H, I}

{A, B}, {C}, {D}, {E}, {F}, {G}, {H}, {I}, {J}, {K}

𝐴

B

Check Connected Components by Disjoint Sets

109 UNSW COMP9312_23T2

We add edge {A, H}, {A, I} {A, B}
{A, H}
{A, I}
{B, I}
{C, J}
{D, E}
{D, K}
{E, F}
{E, K}
{G, H}
{G, I}
{H, I}

{A, B, H, I}, {C}, {D}, {E}, {F}, {G}, {J}, {K}
Add {A,H}: According to the rule of Union
by Size, make smaller tree H point to
bigger one’s root A.

𝐴

BH

Add {A,I}:

BH

𝐴

I

Check Connected Components by Disjoint Sets

110 UNSW COMP9312_23T2

We add edge {B, I}, {C, J} {A, B}
{A, H}
{A, I}
{B, I}
{C, J}
{D, E}
{D, K}
{E, F}
{E, K}
{G, H}
{G, I}
{H, I}

{A, B, H, I}, {C, J}, {D}, {E}, {F}, {G}, {K}

Add {B,I}: B and I are already in the tree, and they all
point to the root. Thus, nothing will be changed.

Add {C,J}:

BH

𝐴

I

𝐶

JBH

𝐴

I

Check Connected Components by Disjoint Sets

111 UNSW COMP9312_23T2

We add edge {D, E}, {D, K} {A, B}
{A, H}
{A, I}
{B, I}
{C, J}
{D, E}
{D, K}
{E, F}
{E, K}
{G, H}
{G, I}
{H, I}

{A, B, H, I}, {C, J}, {D, E, K}, {F}, {G}

Add {D,E}:

Add {D,K}:

𝐶

JBH

𝐴

I

𝐶

JBH

𝐴

I

𝐷

E

𝐷

EK

Check Connected Components by Disjoint Sets

112 UNSW COMP9312_23T2

We add edge {E, F}, {E, K} {A, B}
{A, H}
{A, I}
{B, I}
{C, J}
{D, E}
{D, K}
{E, F}
{E, K}
{G, H}
{G, I}
{H, I}

{A, B, H, I}, {C, J}, {D, E, F, K}, {G}

Add {E,F}:

Add {E,K}: E, K are already pointed to root D.
Thus, there is nothing change of adding {E,K}

𝐶

JBH

𝐴

I

𝐷

EK F

𝐶

JBH

𝐴

I

𝐷

EK F

Check Connected Components by Disjoint Sets

113 UNSW COMP9312_23T2

We add edge {G, H}, {G, I}, {H, I} {A, B}
{A, H}
{A, I}
{B, I}
{C, J}
{D, E}
{D, K}
{E, F}
{E, K}
{G, H}
{G, I}
{H, I}

At last we get result: {A, B, G, H, I}, {C, J}, {D, E, F, K}

Add {G, H}:

Add {G, I}, {H, I}: G, H, I are already pointed to root A.
Thus, there is nothing change of adding {G, I}, {H, I}.

𝐶

JBH

𝐴

I

𝐷

EK FG

𝐶

JBH

𝐴

I

𝐷

EK FG

Check Connected Components by Disjoint Sets

114 UNSW COMP9312_23T2

Build the index: O(|V|+|E|)

Space: O(|V|)

Good for incremental connected components maintenance~

Coding practice~

Check Connected Components by Disjoint Sets

115 UNSW COMP9312_23T2

Topological
Sort

UNSW COMP9312_23T2

Topological Sort
In this topic, we will discuss:
• Motivations
• The definition of a directed acyclic graph (DAG)
• Describe a topological sort and applications
• Describe the algorithm
• Do a run-time and memory analysis of the algorithm

117 UNSW COMP9312_23T2

Motivation

Given a set of tasks with dependencies,
is there an order in which we can complete the tasks?

Dependencies form a partial ordering
A partial ordering on a number of objects can
be represented as a directed acyclic graph (DAG)

118 UNSW COMP9312_23T2

• A directed acyclic graph (DAG) is a directed graph with
no directed cycles.

https://en.wikipedia.org/wiki/Directed_acyclic_graph

Directed acyclic graph (DAG)

119 UNSW COMP9312_23T2

Motivation

Cycles in dependencies can cause issues...

http://xkcd.com/754/

Another example: the precedence graph in database transaction management

120 UNSW COMP9312_23T2

Restriction of paths in DAGs
Observation:

 In a DAG, given two different vertices vj and vk,
there cannot both be a path from vj to vk and a path from vk to vj.

 Definition:
 A topological sorting of the vertices in a DAG is an ordering

v1, v2, v3, …, v|V|
 such that if there is a path from vj to vk , vj appears before vk.

121 UNSW COMP9312_23T2

Definition of topological sorting

Given this DAG, a topological sort is
 H, C, I, D, J, A, F, B, G, K, E, L

122 UNSW COMP9312_23T2

Example
There are paths from H, C, I, D and J to F, so all these must come before F
in a topological sort
 H, C, I, D, J, A, F, B, G, K, E, L

 Clearly, this sorting need not be unique

123 UNSW COMP9312_23T2

Applications
The following is a task graph for getting dressed:

 One topological sort is:
briefs, pants, wallet, keys, belt, socks, shoes, shirt, tie, jacket, iPod, watch

 Another topological sort is:
 briefs, socks, pants, shirt, belt, tie, jacket, wallet, keys, iPod, watch, shoes

124 UNSW COMP9312_23T2

Topological Sort

Idea:
• Given a DAG V, make a copy W and iterate:

• Find a vertex v in W with in-degree zero (i.e., the source vertex)
• Let v be the next vertex in the topological sort
• Continue iterating with the vertex-induced sub-graph W \ {v}

Possible solutions:
 C, H, D, A, B, I, J, F, G, E, K, L

H, I, J, C, D, F, G, K, L, A, B, E

Example:

125 UNSW COMP9312_23T2

Analysis
What are the tools necessary for a topological sort?
• We must know and be able to update the in-degrees of each of

the vertices
• We could do this with a table of the in-degrees of

each of the vertices
• This requires O(|V|) memory

A 1
B 1
C 0
D 2
E 4
F 2
G 1
H 0
I 1
J 1
K 1
L 2

126 UNSW COMP9312_23T2

Analysis
We must iterate at least |V| times, so the run-time must
be O(|V|)

We need to find vertices with in-degree zero
• We could loop through the array with each iteration
• The run time would be O(|V|2)

A 1
B 1
C 0
D 2
E 4
F 2
G 1
H 0
I 1
J 1
K 1
L 2

127 UNSW COMP9312_23T2

Analysis
How did we do with BFS and DFS?
• Use a queue (or other container) to temporarily store those

vertices with in-degree zero
• Each time the in-degree of a vertex is decremented to

zero, push it onto the queue

A 1
B 1
C 0
D 2
E 4
F 2
G 1
H 0
I 1
J 1
K 1
L 2

128 UNSW COMP9312_23T2

Analysis
What are the run times associated with the queue?
• Initially, we must scan through each of the vertices: O(|V|)
• For each vertex, we will have to push onto and pop off the

queue once, also O(|V|)

A 1
B 1
C 0
D 2
E 4
F 2
G 1
H 0
I 1
J 1
K 1
L 2

129 UNSW COMP9312_23T2

Analysis
Finally, each value in the in-degree table is associated with an edge
• Here, |E| = 16
• Each of the in-degrees must be decremented to zero
• The run time of these operations is O(|E|)
• If we are using an adjacency matrix: O(|V|2)
• If we are using an adjacency list: O(|E|)

A 1
B 1
C 0

D 2
E 4
F 2
G 1
H 0
I 1
J 1
K 1
L 216 +

+
+
+
+
+
+
+
+
+
+

130 UNSW COMP9312_23T2

Analysis
Therefore, the run time of a topological sort is:
 O(|V| + |E|) if we use an adjacency list
 O(|V|2) if we use an adjacency matrix
 and the additional memory requirements is O(|V|)

A 1
B 1
C 0
D 2
E 4
F 2
G 1
H 0
I 1
J 1
K 1
L 2

131 UNSW COMP9312_23T2

Analysis
What happens if at some step, all remaining vertices
have an in-degree greater than zero?
• There must be at least one cycle within that sub-set of vertices

Consequence: we now have an O(|V| + |E|) algorithm for
determining if a graph has a cycle

A 1
B 1
C 0
D 2
E 4
F 2
G 1
H 0
I 1
J 1
K 1
L 2

132 UNSW COMP9312_23T2

Implementation
Thus, to implement a topological sort:
• Allocate memory for and initialize an array of in-degrees
• Create a queue and initialize it with all vertices that have in-degree zero

While the queue is not empty:
• Pop a vertex from the queue
• Decrement the in-degree of each neighbor
• Those neighbors whose in-degree was decremented to zero are pushed onto the queue

133 UNSW COMP9312_23T2

Example
With the previous example, we initialize:
• The array of in-degrees
• The queue A 1

B 1
C 0
D 2
E 4
F 2
G 1
H 0
I 1
J 1
K 1
L 2

The queue is empty

Queue:

134 UNSW COMP9312_23T2

Example
Stepping through the table, push all source vertices into the queue

A 1
B 1
C 0
D 2
E 4
F 2
G 1
H 0
I 1
J 1
K 1
L 2

Queue:

135 UNSW COMP9312_23T2

Example
Stepping through the table, push all source vertices into the queue

A 1
B 1
C 0
D 2
E 4
F 2
G 1
H 0
I 1
J 1
K 1
L 2

C HQueue:

136 UNSW COMP9312_23T2

Example
Pop the front of the queue

A 1
B 1
C 0
D 2
E 4
F 2
G 1
H 0
I 1
J 1
K 1
L 2

C HQueue:

137 UNSW COMP9312_23T2

Example
Pop the front of the queue
• C has one neighbor: D

A 1
B 1
C 0
D 2
E 4
F 2
G 1
H 0
I 1
J 1
K 1
L 2

C HQueue:

138 UNSW COMP9312_23T2

Example
Pop the front of the queue
• C has one neighbor: D
• Decrement its in-degree A 1

B 1
C 0
D 1
E 4
F 2
G 1
H 0
I 1
J 1
K 1
L 2

C HQueue:

139 UNSW COMP9312_23T2

Example
Pop the front of the queue

A 1
B 1
C 0
D 1
E 4
F 2
G 1
H 0
I 1
J 1
K 1
L 2

C HQueue:

140 UNSW COMP9312_23T2

Example
Pop the front of the queue
• H has two neighbors: D and I

A 1
B 1
C 0
D 1
E 4
F 2
G 1
H 0
I 1
J 1
K 1
L 2

C HQueue:

141 UNSW COMP9312_23T2

Example
Pop the front of the queue
• H has two neighbors: D and I
• Decrement their in-degrees A 1

B 1
C 0
D 0
E 4
F 2
G 1
H 0
I 0
J 1
K 1
L 2

C HQueue:

142 UNSW COMP9312_23T2

Example
Pop the front of the queue
• H has two neighbors: D and I
• Decrement their in-degrees

• Both are decremented to zero, so push them onto the queue

A 1
B 1
C 0
D 0
E 4
F 2
G 1
H 0
I 0
J 1
K 1
L 2

C HQueue:

143 UNSW COMP9312_23T2

Example
Pop the front of the queue
• H has two neighbors: D and I
• Decrement their in-degrees

• Both are decremented to zero, so push them onto the queue

A 1
B 1
C 0
D 0
E 4
F 2
G 1
H 0
I 0
J 1
K 1
L 2

C H D IQueue:

144 UNSW COMP9312_23T2

Example
Pop the front of the queue

A 1
B 1
C 0
D 0
E 4
F 2
G 1
H 0
I 0
J 1
K 1
L 2

C H D IQueue:

145 UNSW COMP9312_23T2

Example
Pop the front of the queue
• D has three neighbors: A, E and F

A 1
B 1
C 0
D 0
E 4
F 2
G 1
H 0
I 0
J 1
K 1
L 2

C H D IQueue:

146 UNSW COMP9312_23T2

Example
Pop the front of the queue
• D has three neighbors: A, E and F
• Decrement their in-degrees A 0

B 1
C 0
D 0
E 3
F 1
G 1
H 0
I 0
J 1
K 1
L 2

C H D IQueue:

147 UNSW COMP9312_23T2

Example
Pop the front of the queue
• D has three neighbors: A, E and F
• Decrement their in-degrees

• A is decremented to zero, so push it onto the queue

A 0
B 1
C 0
D 0
E 3
F 1
G 1
H 0
I 0
J 1
K 1
L 2

C H D I AQueue:

148 UNSW COMP9312_23T2

Example
Pop the front of the queue

A 0
B 1
C 0
D 0
E 3
F 1
G 1
H 0
I 0
J 1
K 1
L 2

C H D I AQueue:

149 UNSW COMP9312_23T2

Example
Pop the front of the queue
• I has one neighbor: J

A 0
B 1
C 0
D 0
E 3
F 1
G 1
H 0
I 0
J 1
K 1
L 2

C H D I AQueue:

150 UNSW COMP9312_23T2

Example
Pop the front of the queue
• I has one neighbor: J
• Decrement its in-degree A 0

B 1
C 0
D 0
E 3
F 1
G 1
H 0
I 0
J 0
K 1
L 2

C H D I AQueue:

151 UNSW COMP9312_23T2

Example
Pop the front of the queue
• I has one neighbor: J
• Decrement its in-degree

• J is decremented to zero, so push it onto the queue

A 0
B 1
C 0
D 0
E 3
F 1
G 1
H 0
I 0
J 0
K 1
L 2

C H D I A JQueue:

152 UNSW COMP9312_23T2

Example
Pop the front of the queue

A 0
B 1
C 0
D 0
E 3
F 1
G 1
H 0
I 0
J 0
K 1
L 2

C H D I A JQueue:

153 UNSW COMP9312_23T2

Example
Pop the front of the queue
• A has one neighbor: B

A 0
B 1
C 0
D 0
E 3
F 1
G 1
H 0
I 0
J 0
K 1
L 2

C H D I A JQueue:

154 UNSW COMP9312_23T2

Example
Pop the front of the queue
• A has one neighbor: B
• Decrement its in-degree A 0

B 0
C 0
D 0
E 3
F 1
G 1
H 0
I 0
J 0
K 1
L 2

C H D I A JQueue:

155 UNSW COMP9312_23T2

Example
Pop the front of the queue
• A has one neighbor: B
• Decrement its in-degree

• B is decremented to zero, so push it onto the queue

A 0
B 0
C 0
D 0
E 3
F 1
G 1
H 0
I 0
J 0
K 1
L 2

C H D I A J BQueue:

156 UNSW COMP9312_23T2

Example
Pop the front of the queue

A 0
B 0
C 0
D 0
E 3
F 1
G 1
H 0
I 0
J 0
K 1
L 2

C H D I A J BQueue:

157 UNSW COMP9312_23T2

Example
Pop the front of the queue
• J has one neighbor: F

A 0
B 0
C 0
D 0
E 3
F 1
G 1
H 0
I 0
J 0
K 1
L 2

C H D I A J BQueue:

158 UNSW COMP9312_23T2

Example
Pop the front of the queue
• J has one neighbor: F
• Decrement its in-degree A 0

B 0
C 0
D 0
E 3
F 0
G 1
H 0
I 0
J 0
K 1
L 2

C H D I A J BQueue:

159 UNSW COMP9312_23T2

Example
Pop the front of the queue
• J has one neighbor: F
• Decrement its in-degree

• F is decremented to zero, so push it onto the queue

A 0
B 0
C 0
D 0
E 3
F 0
G 1
H 0
I 0
J 0
K 1
L 2

C H D I A J B FQueue:

160 UNSW COMP9312_23T2

Example
Pop the front of the queue

A 0
B 0
C 0
D 0
E 3
F 0
G 1
H 0
I 0
J 0
K 1
L 2

C H D I A J B FQueue:

161 UNSW COMP9312_23T2

Example
Pop the front of the queue
• B has one neighbor: E

A 0
B 0
C 0
D 0
E 3
F 0
G 1
H 0
I 0
J 0
K 1
L 2

C H D I A J B FQueue:

162 UNSW COMP9312_23T2

Example
Pop the front of the queue
• B has one neighbor: E
• Decrement its in-degree

C H D I A J B FQueue:

A 0
B 0
C 0
D 0
E 2
F 0
G 1
H 0
I 0
J 0
K 1
L 2

163 UNSW COMP9312_23T2

Example
Pop the front of the queue

C H D I A J B FQueue:

A 0
B 0
C 0
D 0
E 2
F 0
G 1
H 0
I 0
J 0
K 1
L 2

164 UNSW COMP9312_23T2

Example
Pop the front of the queue
• F has three neighbors: E, G and K

C H D I A J B FQueue:

A 0
B 0
C 0
D 0
E 2
F 0
G 1
H 0
I 0
J 0
K 1
L 2

165 UNSW COMP9312_23T2

Example
Pop the front of the queue
• F has three neighbors: E, G and K
• Decrement their in-degrees

C H D I A J B FQueue:

A 0
B 0
C 0
D 0
E 1
F 0
G 0
H 0
I 0
J 0
K 0
L 2

166 UNSW COMP9312_23T2

Example
Pop the front of the queue
• F has three neighbors: E, G and K
• Decrement their in-degrees

• G and K are decremented to zero,
 so push them onto the queue

C H D I A J B F G KQueue:

A 0
B 0
C 0
D 0
E 1
F 0
G 0
H 0
I 0
J 0
K 0
L 2

167 UNSW COMP9312_23T2

Example
Pop the front of the queue

C H D I A J B F G KQueue:

A 0
B 0
C 0
D 0
E 1
F 0
G 0
H 0
I 0
J 0
K 0
L 2

168 UNSW COMP9312_23T2

Example
Pop the front of the queue
• G has two neighbors: E and L

C H D I A J B F G KQueue:

A 0
B 0
C 0
D 0
E 1
F 0
G 0
H 0
I 0
J 0
K 0
L 2

169 UNSW COMP9312_23T2

Example
Pop the front of the queue
• G has two neighbors: E and L
• Decrement their in-degrees

C H D I A J B F G KQueue:

A 0
B 0
C 0
D 0
E 0
F 0
G 0
H 0
I 0
J 0
K 0
L 1

170 UNSW COMP9312_23T2

Example
Pop the front of the queue
• G has two neighbors: E and L
• Decrement their in-degrees

• E is decremented to zero, so push it onto the queue

C H D I A J B F G K EQueue:

A 0
B 0
C 0
D 0
E 0
F 0
G 0
H 0
I 0
J 0
K 0
L 1

171 UNSW COMP9312_23T2

Example
Pop the front of the queue

C H D I A J B F G K EQueue:

A 0
B 0
C 0
D 0
E 0
F 0
G 0
H 0
I 0
J 0
K 0
L 1

172 UNSW COMP9312_23T2

Example
Pop the front of the queue
• K has one neighbors: L

C H D I A J B F G K EQueue:

A 0
B 0
C 0
D 0
E 0
F 0
G 0
H 0
I 0
J 0
K 0
L 1

173 UNSW COMP9312_23T2

Example
Pop the front of the queue
• K has one neighbors: L
• Decrement its in-degree

C H D I A J B F G K EQueue:

A 0
B 0
C 0
D 0
E 0
F 0
G 0
H 0
I 0
J 0
K 0
L 0

174 UNSW COMP9312_23T2

Example
Pop the front of the queue
• K has one neighbors: L
• Decrement its in-degree

• L is decremented to zero, so push it onto the queue

C H D I A J B F G K E LQueue:

A 0
B 0
C 0
D 0
E 0
F 0
G 0
H 0
I 0
J 0
K 0
L 0

175 UNSW COMP9312_23T2

Example
Pop the front of the queue

C H D I A J B F G K E LQueue:

A 0
B 0
C 0
D 0
E 0
F 0
G 0
H 0
I 0
J 0
K 0
L 0

176 UNSW COMP9312_23T2

Example
Pop the front of the queue
• E has no neighbors—it is a sink

C H D I A J B F G K E LQueue:

A 0
B 0
C 0
D 0
E 0
F 0
G 0
H 0
I 0
J 0
K 0
L 0

177 UNSW COMP9312_23T2

Example
Pop the front of the queue

C H D I A J B F G K E LQueue:

A 0
B 0
C 0
D 0
E 0
F 0
G 0
H 0
I 0
J 0
K 0
L 0

178 UNSW COMP9312_23T2

Example
Pop the front of the queue
• L has no neighbors—it is also a sink

C H D I A J B F G K E LQueue:

A 0
B 0
C 0
D 0
E 0
F 0
G 0
H 0
I 0
J 0
K 0
L 0

179 UNSW COMP9312_23T2

Example
The queue is empty, so we are done

C H D I A J B F G K E LQueue:

A 0
B 0
C 0
D 0
E 0
F 0
G 0
H 0
I 0
J 0
K 0
L 0

180 UNSW COMP9312_23T2

Example
The enqueue order is the topological sorting

C H D I A J B F G K E L

A 0
B 0
C 0
D 0
E 0
F 0
G 0
H 0
I 0
J 0
K 0
L 0

181 UNSW COMP9312_23T2

Exercise

Can you compute the topological sort of the following graph?

A

D

B
C

E

182 UNSW COMP9312_23T2

Exercise
Initialize the array of in-degrees and the queue

A 0
B 1
C 2
D 1
E 2

The queue is empty

Queue:

A

D

B
C

E

183 UNSW COMP9312_23T2

Exercise
Push A onto the queue

A

D

B
C

E

A

A 0
B 1
C 2
D 1
E 2

Queue:

184 UNSW COMP9312_23T2

Exercise
Pop the front of the queue
– A has two neighbors: D and E

A

A 0
B 1
C 2
D 1
E 2

Queue:

A

D

B
C

E

185 UNSW COMP9312_23T2

Exercise
Pop the front of the queue
– A has two neighbors: D and E
– Decrement their in-degree

A

A 0
B 1
C 2
D 0
E 1

Queue:

A

D

B
C

E

186 UNSW COMP9312_23T2

A

D

B
C

E

Exercise
Pop the front of the queue
– A has two neighbors: D and E
– Decrement their in-degree

A DQueue:

A 0
B 1
C 2
D 0
E 1

D is decremented to zero, so push it onto the queue

187 UNSW COMP9312_23T2

A

D

B
C

E

Exercise
Pop the front of the queue
– D has two neighbors: B and C

A D

A 0
B 1
C 2
D 0
E 1

Queue:

188 UNSW COMP9312_23T2

A

D

B
C

E

Exercise
Pop the front of the queue
– D has two neighbors: B and C
– Decrement their in-degree

A D

A 0
B 0
C 1
D 0
E 1

Queue:

189 UNSW COMP9312_23T2

A

D

B
C

E

Exercise
Pop the front of the queue
– D has two neighbors: B and C
– Decrement their in-degree

A D BQueue:

A 0
B 0
C 1
D 0
E 1

B is decremented to zero, so push it onto the queue

190 UNSW COMP9312_23T2

A

D

B
C

E

Exercise
Pop the front of the queue
– B has one neighbor: C

A D B

A 0
B 0
C 1
D 0
E 1

Queue:

191 UNSW COMP9312_23T2

A

D

B
C

E

Exercise
Pop the front of the queue
– B has one neighbor: C
– Decrement its in-degree

A D B

A 0
B 0
C 0
D 0
E 1

Queue:

192 UNSW COMP9312_23T2

A

D

B
C

E

Exercise
Pop the front of the queue
– B has one neighbor: C
– Decrement its in-degree

A 0
B 0
C 0
D 0
E 1

A D B CQueue:

C is decremented to zero, so push it onto the queue

193 UNSW COMP9312_23T2

A

D

B
C

E

Exercise
Pop the front of the queue
– C has one neighbor: E

A D B C

A 0
B 0
C 0
D 0
E 1

Queue:

194 UNSW COMP9312_23T2

A

D

B
C

E

Exercise
Pop the front of the queue
– C has one neighbor: E
– Decrement its in-degree

A D B C

A 0
B 0
C 0
D 0
E 0

Queue:

195 UNSW COMP9312_23T2

A

D

B
C

E

Exercise
Pop the front of the queue
– C has one neighbor: E
– Decrement its in-degree

A 0
B 0
C 0
D 0
E 0

A D B C EQueue:

E is decremented to zero, so push it onto the queue

196 UNSW COMP9312_23T2

A

D

B
C

E

Exercise
Pop the front of the queue
– E has no neighbors

A D B C E

A 0
B 0
C 0
D 0
E 0

Queue:

197 UNSW COMP9312_23T2

A

D

B
C

E

Exercise
The queue is empty, so we are done

A D B C E

A 0
B 0
C 0
D 0
E 0

Queue:

198 UNSW COMP9312_23T2

Learning outcomes

• Understand the BFS and DFS algorithms

• Understand the algorithms for computing connected

components (using BFS and Disjoint-set)

• Know the concept of topological sort and how to compute it

199 UNSW COMP9312_23T2

