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Breath-first and 
depth-first traversals



Strategies
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Traversals of graphs are also called searches
Applications of BFS
§ Shortest Path
§ …

Applications of DFS
§ Strongly connected component
§ Topological Order
§ …

A quick view:
https://seanperfecto.github.io/BFS-DFS-Pathfinder/

https://seanperfecto.github.io/BFS-DFS-Pathfinder/


Breadth-first traversal
Consider implementing a breadth-first traversal on a graph:
• Choose any vertex, mark it as visited and push it onto queue
• While the queue is not empty:

• Pop to top vertex v from the queue
• For each vertex adjacent to v that has not been visited:

• Mark it visited, and
• Push it onto the queue

This continues until the queue is empty
• Note:  if there are no unvisited vertices, the graph is connected
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Breadth-first traversal
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An implementation can 
use a queue
         



Example

Consider this graph
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Example
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Performing a breadth-first traversal
• Push the first vertex onto the queue

A



Example

Performing a breadth-first traversal
• Pop A and push B, C and E

A
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B C E



Example

Performing a breadth-first traversal:
• Pop B and push D

A, B
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C E D



E D F

Example

Performing a breadth-first traversal:
• Pop C and push F

A, B, C
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D F G H

Example

Performing a breadth-first traversal:
• Pop E and push G and H

A, B, C, E
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F G H

Example

Performing a breadth-first traversal:
• Pop D

A, B, C, E, D
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G H

Example

Performing a breadth-first traversal:
• Pop F

A, B, C, E, D, F
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H I

Example

Performing a breadth-first traversal:
• Pop G and push I

A, B, C, E, D, F, G
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I

Example

Performing a breadth-first traversal:
• Pop H

A, B, C, E, D, F, G, H
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Example

Performing a breadth-first traversal:
• Pop I, The queue is empty:  we are finished

A, B, C, E, D, F, G, H, I
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BFS

Coding practice~

Number of layers in BFS tree: the longest shortest distance
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Depth-First Traversal
Consider implementing a depth-first traversal on a graph:
• Choose any vertex, mark it as visited
• From that vertex:

• If there is another adjacent vertex not yet visited, go to it
• Otherwise, go back to the last vertex that has not had all of its adjacent vertices visited and 

continue from there
• Continue until no visited vertices have unvisited adjacent vertices

Two implementations:
• Recursive approach (a statement in a function calls itself repeatedly)
• Iterative approach (a loop repeatedly executes until the controlling condition becomes 

false)
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Recursive depth-first traversal

A recursive implementation uses the call stack for memory:
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Iterative depth-first traversal

An iterative implementation 
can use a stack
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Example

Perform a recursive depth-first traversal on this same graph
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Example

Performing a recursive depth-first traversal:
• Visit the first node

A
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Example

Performing a recursive depth-first traversal:
• A has an unvisited neighbor

A, B
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Example

Performing a recursive depth-first traversal:
• B has an unvisited neighbor

A, B, C
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Example

Performing a recursive depth-first traversal:
• C has an unvisited neighbor

A, B, C, D

26 UNSW COMP9312_23T2



Example

Performing a recursive depth-first traversal:
• D has no unvisited neighbors, so we return to C

A, B, C, D, E
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Example

Performing a recursive depth-first traversal:
• E has an unvisited neighbor

A, B, C, D, E, G
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Example

Performing a recursive depth-first traversal:
• G has an unvisited neighbor

A, B, C, D, E, G, I
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Example

Performing a recursive depth-first traversal:
• I has an unvisited neighbor

A, B, C, D, E, G, I, H
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Example

Performing a recursive depth-first traversal:
• We recurse back to C which has an unvisited neighbour

A, B, C, D, E, G, I, H, F
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Example

Performing a recursive depth-first traversal:
• We recurse finding that no other nodes have unvisited neighbours

A, B, C, D, E, G, I, H, F
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Comparing BFS and DFS

The order can differ greatly
• An iterative depth-first traversal may also be different again
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Recursive DFS: A, B, C, D, E, G, I, H, FBFS: A, B, C, E, D, F, G, H, I



Quick Quiz
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B

A

E

C

D

F

G

I

H

Can you show the result of iterative 
depth-first traversal?



Example

Performing an iterative depth-first traversal:
• Push the first vertex onto the stack
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Example

Performing an iterative depth-first traversal:
• Pop A and push B, C and E

A
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Example

Performing an iterative depth-first traversal:
• Pop E and push C, G, and H

A, E
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Example

Performing an iterative depth-first traversal:
• Pop H, and push I

A, E, H
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Example

Performing an iterative depth-first traversal:
• Pop I and push G

A, E, H, I
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Example

Performing an iterative depth-first traversal:
• Pop G

A, E, H, I, G
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Example

Performing an iterative depth-first traversal:
• Pop G again, and skip G since it is visited

A, E, H, I, G
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Example

Performing an iterative depth-first traversal:
• Pop C, and add B, D, F

A, E, H, I, G, C
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Example

Performing an iterative depth-first traversal:
• Pop F

A, E, H, I, G, C, F

43 UNSW COMP9312_23T2

D
B
C
B

B

A

E

C

D

F

G

I

H



Example

Performing an iterative depth-first traversal:
• Pop D and add B

A, E, H, I, G, C, F, D
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Example

Performing an iterative depth-first traversal:
• Pop B

A, E, H, I, G, C, F, D, B
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Pop  and skip all remining vertices in the stack 
since they are already visited



Complexity Analysis

We have to track which vertices have been visited requiring 
O(|V|) memory

The time complexity cannot be better than and should not be 
worse than O(|V| + |E|)

Connected graphs simplify this to O(|E|) – Why?
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DFS: Recursive VS stack-based

Which one is better?

Coding practice~
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Summary
This topic covered graph traversals

• Considered breadth-first and depth-first traversals

• Depth-first traversals can recursive or iterative

• Considered an example with both implementations

• They are also called searches
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OptionalRecent Research on DFS/BFS

External Memory Algorithms
If there is no enough memory to store the whole graph, 
how to compute DFS
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https://dl.acm.org/doi/10.1145/2723372.2723740



OptionalRecent Research on DFS/BFS

Dynamic Graphs
When graph updates (new edge inserts or old edge removes)

Compute DFS from scratch
VS
Update DFS tree
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ABSTRACT
Depth-first search (DFS) is a fundamental and important al-
gorithm in graph analysis. It is the basis of many graph algo-
rithms such as computing strongly connected components,
testing planarity, and detecting biconnected components.
The result of a DFS is normally shown as a DFS-Tree. Given
the frequent updates in many real-world graphs (e.g., social
networks and communication networks), we study the prob-
lem of DFS-Tree maintenance in dynamic directed graphs.
In the literature, most works focus on the DFS-Tree main-
tenance problem in undirected graphs and directed acyclic
graphs. However, their methods cannot easily be applied
in the case of general directed graphs. Motivated by this,
we propose a framework and corresponding algorithms for
both edge insertion and deletion in general directed graphs.
We further give several optimizations to speed up the algo-
rithms. We conduct extensive experiments on 12 real-world
datasets to show the efficiency of our proposed algorithms.
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1. INTRODUCTION
Depth-first search (DFS)1 is an algorithm to traverse a

graph. It searches the vertices along a graph as far as pos-
sible in each branch before backtracking. The process of a
DFS is naturally represented as a search spanning tree fol-
lowing the depth-first order, named the DFS-Tree. Given
a graph G in Figure 1(a), a DFS-Tree T of G is shown in
Figure 1(b). The time complexity for performing a DFS
traversal and generating a DFS-Tree in a graph G(V,E) is
O(|V |+ |E|) [20].

DFS is a fundamental algorithm in graph analysis and
is the basis for efficiently solving numerous graph problems,
such as testing graph reachability [19,24], detecting strongly
1https://en.wikipedia.org/wiki/Depth-first_search
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(b) A DFS-Tree T of G

Figure 1: An example graph G and its DFS-Tree T .

� is a virtual root connecting all vertices in G.

connected components [9,17,20], detecting biconnected com-
ponents [11], finding graph bridges [21], finding paths, de-
tecting cycles [23], testing bipartiteness, testing graph pla-
narity [8,12], and topological sorting [22]. These algorithms
perform DFS traversal as a subroutine. They require access
to vertices in the depth-first order.

In many real-world applications, graphs dynamically up-
date over time. Given the importance of DFS, the DFS-Tree
maintenance problem in dynamic directed graphs is insuf-
ficiently studied. In this paper, we examine this problem,
which is to update the DFS-Tree for an inserted or deleted
edge. The aforementioned applications of DFS benefit from
this study. Specifically, in many graph problems such as
computing strongly connected components [20], biconnected
components [11], and finding graph bridges [21], a key step
is to compute the reachable ancestor with the lowest depth
of each vertex in the DFS-Tree. Based on this study, we
can simply finish this task by directly tracking the updated
DFS-Tree of the graph. For example, in detecting bicon-
nected components, it is required to compute a DFS-Tree of
the graph and then traverse the tree to get the shallowest po-
sition that each vertex can reach. When the graph updates,
we can derive an updated DFS-Tree instead of performing
the DFS traversal from scratch. We can also simultaneously
maintain the interval label (discovery time and finish time)
of each vertex as a byproduct in the DFS-Tree. The interval
label is used in several works [19, 24] as a part of the index
to test the graph reachability. These works filter out the
queries if two vertices are connected in the tree, and it only
takes constant time to check the reachability in the tree us-
ing the interval labels. Based on the study in this paper,
we can immediately derive the updated interval labels when
the graph updates instead of rerunning DFS. In addition, in
puzzle problems such as mazes, users can check the updated

1

https://dl.acm.org/doi/10.14778/3364324.3364329



OptionalRecent Research on DFS/BFS

Distributed Algorithms
The information (neighbors) of different vertices locate in different machines.

Distributed DFS algorithm is hard.
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Connectivity
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Connectivity
We will use graph traversals to determine:
• Whether one vertex is connected to another
• The connected sub-graphs of a graph

First, let us determine whether one vertex is connected to another
• vj is connected to vk if there is a path from vj to vk

Strategy:
• Perform a breadth-first traversal starting at vj
• While looping, if the vertex vk ever found to be adjacent to the front of the queue, return 

true
• If the loop ends, return false
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Determining Connections

Is A connected to D?
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Determining Connections

Vertex A is marked as visited and pushed onto the queue
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A A



Determining Connections

Pop the head, A, and mark and push B, F and G
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B F G B F G



Determining Connections
Pop B and mark and, in the left graph, mark and push H
• On the right graph, B has no unvisited adjacent vertices
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F G H F G



Determining Connections

Popping F results in the pushing of E
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G H E G E



Determining Connections

In either graph, G has no adjacent vertices that are unvisited
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H E E



Determining Connections

Popping H on the left graph results in C, I, D being pushed
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E C I D

In the left graph, A is connected to D, 
since D is in the queue

The queue on the right is empty. We determine 
A is not connected to D



Connectivity

Coding practice~

Any better idea?
§ Bidirectional search
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Connected Components
If we continued the traversal, we would find all vertices that are connected to A

Suppose we want to find the connected components of the graph
• While there are unvisited vertices:

• Select an unvisited vertex and perform a traversal on that vertex
• Each vertex that is visited in that traversal is added to the set initially containing the initial unvisited vertex

• Continue until all vertices are visited
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Connected Components

A B C D E F G H I J K

A B C D E F G H I J K

Here we start with a set of singletons
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Connected Components
The vertex A is unvisited, so we start with it

A B C D E F G H I J K

A B C D E F G H I J K
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Connected Components
Take the union of with its adjacent vertices:  {A, B, H, I}

A B C D E F G H I J K

A A C D E F G A A J K
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Connected Components
As the traversal continues, we take the union of the set {G} with the set 
containing H:  {A, B, G, H, I}
• The traversal is finished

A B C D E F G H I J K

A A C D E F A A A J K
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Connected Components
Start another traversal with C:  this defines a new set {C}

A B C D E F G H I J K

A A C D E F A A A J K
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Connected Components
We take the union of {C} and its adjacent vertex J: {C, J}
• This traversal is finished

A B C D E F G H I J K

A A C D E F A A A C K
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Connected Components
We start again with the set {D}

A B C D E F G H I J K

A A C D E F A A A C K
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Connected Components
K and E are adjacent to D, so take the unions creating {D, E, K}

A B C D E F G H I J K

A A C D D F A A A C D

73 UNSW COMP9312_23T2



Connected Components
Finally, during this last traversal we find that F is adjacent to E
• Take the union of {F} with the set containing E: {D, E, F, K}

A B C D E F G H I J K

A A C D D D A A A C D

74 UNSW COMP9312_23T2



Connected Components
All vertices are visited, so we are done
• There are three connected sub-graphs {A, B, G, H, I}, {C, J}, {D, E, F, K}

A B C D E F G H I J K

A A C D D D A A A C D
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Tracking Unvisited Vertices

How do you implement a list of unvisited vertices so as to:
• Find an unvisited vertex in O(1) time
• Remove a vertex that has been visited from this list in O(1) time?

The solution will use O(|V|) additional memory

Coding practice~

O(|V|)The time complexity to find an unvisited vertex:
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Tracking Unvisited Vertices
Create two arrays:
• One array, unvisited, will contain the unvisited vertices
• The other, loc_in_unvisited, will contain the location of vertex vi in the first array

0 1 2 3 4 5 6 7 8 9 10

A B C D E F G H I J K

A B C D E F G H I J K

0 1 2 3 4 5 6 7 8 9 10
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Tracking Unvisited Vertices
Suppose we visit D
• D is in entry 3

0 1 2 3 4 5 6 7 8 9 10

A B C D E F G H I J K

A B C D E F G H I J K

0 1 2 3 4 5 6 7 8 9 10
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Tracking Unvisited Vertices
Suppose we visit D
• D is in entry 3
• Copy the last unvisited vertex into this location and update the location array for this value

0 1 2 3 4 5 6 7 8 9 10

A B C K E F G H I J

A B C D E F G H I J K

0 1 2 3 4 5 6 7 8 9 3
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Tracking Unvisited Vertices
Suppose we visit G
• G is in entry 6

0 1 2 3 4 5 6 7 8 9 10

A B C K E F G H I J

A B C D E F G H I J K

0 1 2 3 4 5 6 7 8 9 3
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Tracking Unvisited Vertices
Suppose we visit G
• G is in entry 6
• Copy the last unvisited vertex into this location and update the location array for this value

0 1 2 3 4 5 6 7 8 9 10

A B C K E F J H I

A B C D E F G H I J K

0 1 2 3 4 5 6 7 8 6 3
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Tracking Unvisited Vertices
Suppose we now visit K
• K is in entry 3

0 1 2 3 4 5 6 7 8 9 10

A B C K E F J H I

A B C D E F G H I J K

0 1 2 3 4 5 6 7 8 6 3
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Tracking Unvisited Vertices
Suppose we now visit K
• K is in entry 3
• Copy the last unvisited vertex into this location and update the location array for this value

0 1 2 3 4 5 6 7 8 9 10

A B C I E F J H

A B C D E F G H I J K

0 1 2 3 4 5 6 7 3 6 3
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Tracking Unvisited Vertices
If we want to find an unvisited vertex, we simply return the last entry of the 
first array and return it

0 1 2 3 4 5 6 7 8 9 10

A B C I E F J H

A B C D E F G H I J K

0 1 2 3 4 5 6 7 3 6 3
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Tracking Unvisited Vertices
In this case, an unvisited vertex is H
• Removing it is trivial:  just decrement the count of unvisited vertices

0 1 2 3 4 5 6 7 8 9 10

A B C I E F J

A B C D E F G H I J K

0 1 2 3 4 5 6 7 3 6 3
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Tracking Unvisited Vertices
The actual algorithm is exceptionally fast:
• The initialization is O(|V|) 
• Determining if the vertex vk is visited is fast:  O(1)
• Marking vertex vk as having been visited is also fast:  O(1)  
• Returning a vertex that is unvisited is also fast:  O(1) 

• The idea/structure is for any scenario that needs to remove an 
item from a list (without any order limitation).

• The other option: doubly linked list
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We start with two arrays
Compute connected components with new data structure

0 1 2 3 4 5 6 7 8 9 10

A B C D E F G H I J K

A B C D E F G H I J K

0 1 2 3 4 5 6 7 8 9 10
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The first unvisited vertex is K
– Remove K

Compute connected components with new data structure

0 1 2 3 4 5 6 7 8 9 10

A B C D E F G H I J K

A B C D E F G H I J K

0 1 2 3 4 5 6 7 8 9 10

B

A

H I

G

J

C

K
D

EF
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– Visit D through the edge (K, D)
– Copy J into location 3 and update the location array

0 1 2 3 4 5 6 7 8 9 10

A B C J E F G H I J

A B C D E F G H I J K

0 1 2 3 4 5 6 7 8 3 10

B

A

H I

G

J

C

K
D

EF

Compute connected components with new data structure

89 UNSW COMP9312_23T2



– Visit E through the edge (K, E)
– Copy I into location 4 and update the location array

0 1 2 3 4 5 6 7 8 9 10

A B C J I F G H I

A B C D E F G H I J K

0 1 2 3 4 5 6 7 4 3 10

B

A

H I

G

J

C

K
D

EF

Compute connected components with new data structure

90 UNSW COMP9312_23T2



– Visit F through the edge (E, F)
– Copy H into location 5 and update the location array

0 1 2 3 4 5 6 7 8 9 10

A B C J I H G H

A B C D E F G H I J K

0 1 2 3 4 5 6 5 4 3 10

B

A

H I

G

J

C

K
D

EF

Compute connected components with new data structure
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– BFS Queue is empty, one component {D, E, F, K} is found.
– Then, we visit G
– Remove G

0 1 2 3 4 5 6 7 8 9 10

A B C J I H G

A B C D E F G H I J K

0 1 2 3 4 5 6 5 4 3 10

B

A

H I

G

J

C

K
D

EF

Compute connected components with new data structure
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– Visit H through (G, H)
– Remove H

0 1 2 3 4 5 6 7 8 9 10

A B C J I H

A B C D E F G H I J K

0 1 2 3 4 5 6 5 4 3 10

B

A

H I

G

J

C

K
D

EF

Compute connected components with new data structure
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– Visit I
– Remove I

0 1 2 3 4 5 6 7 8 9 10

A B C J I

A B C D E F G H I J K

0 1 2 3 4 5 6 5 4 3 10

B

A

H I

G

J

C

K
D

EF

Compute connected components with new data structure
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– Visit A
– Copy J into location 0 and update the location array

0 1 2 3 4 5 6 7 8 9 10

J B C J

A B C D E F G H I J K

0 1 2 3 4 5 6 5 4 0 10

B

A

H I

G

J

C

K
D

EF

Compute connected components with new data structure
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– Visit B
– Copy C into location 1 and update the location array

0 1 2 3 4 5 6 7 8 9 10

J C C

A B C D E F G H I J K

0 1 1 3 4 5 6 5 4 0 10

B

A

H I

G

J

C

K
D

EF

Compute connected components with new data structure
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– Visit C
– Remove C

0 1 2 3 4 5 6 7 8 9 10

J C

A B C D E F G H I J K

0 1 1 3 4 5 6 5 4 0 10

B

A

H I

G

J

C

K
D

EF

Compute connected components with new data structure

97 UNSW COMP9312_23T2



– Visit J
– Remove J

0 1 2 3 4 5 6 7 8 9 10

A B C D E F G H I J K

0 1 1 3 4 5 6 5 4 0 10

B

A

H I

G

J

C

K
D

EF

Compute connected components with new data structure
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Connected Component Detection
Coding practice~

Any other easier way to implement?
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Disjoint set data structure
• Consider n elements, named 1, 2, …, n

•  The disjoint set is a collection of sets of elements

•  Each element is in exactly one set 
• sets are disjoint
• to start, each set contains one element

• SetName = find ( elementName )
• returns the name of the set that contains the given element

• union ( SetName1, SetName2 )
• union two sets together into a new set 

How to quickly perform union and find operations?
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Disjoint set data structure
Attempt 1: Quick Find

•  Array implementation. elements are 1, …, N
• SetName[i] = name of the set containing element i
• Pseudo code: 

 

 

Initialize(int N)
 SetName = new int [N+1];
 for (int e=1; e<=N; e++)
  SetName[e] = e;

Union(int i, int j)
 for (int k=1; k<=N; k++)
  if (SetName[k] == j)
      SetName[k] = i;

int Find(int e)
 return SetName[e];

Time Complexity Analysis: 

 Find :  O(1),  Union :  O(n)

Note: we usually use n to denote 
the number of vertices (i.e., |V|) 
and use m to denote the number 
of edges (i.e., |E|).
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Disjoint Set data structure
Attempt 2: Smart Union: Union by Size

• union(u, v): make smaller tree’s root point to bigger one’s root
• That is, make v’s root point to u’s if v’s tree is smaller. 
• Union(4,5), union(6,7), union(4,6) 

 

 Now perform union(3, 4). Smaller tree made the child node.

4

5 6

7

0 1 2 3

0 1 2

4

5 6

7

3
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Disjoint Set data structure

 

 

Initialize(int N)
 setsize = new int[N+1];
 parent = new int [N+1];
 for (int e=1; e <= N; e++)
  parent[e] = 0;
  setsize[e] = 1;

int Find(int e)
 while (parent[e] != 0)
  e = parent[e];
 return e;

Union(int i, int j)
  i = find(i);
  j = find(j)’
 if setsize[i] < setsize[j]
 then
  setsize[j] += setsize[i];
  parent[i] = j;
 else
  setsize[i] += setsize[j];
  parent[j] = i ;

Union by Size:  
link smaller tree to larger one

Lemma:  After n union ops, the tree 
height is at most log(n).
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Disjoint Set data structure

• Find(u) takes time proportional to u’s depth in its tree.

• When union(u, v) performed, the depth of u only increases if its root becomes 
the child of v’s root. That only happens if v’s tree is larger than u’s tree.

• If u’s depth grows by 1, its (new) treeSize is > 2 * oldTreeSize 
 Each increment in depth doubles the size of u’s tree.
 After n union operations, size is at most n, so depth at most log(n).

• Theorem:  With Union-By-Size, we can do find in O(log n) time and union in 
O(log(n)) time.

Time Complexity:
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Disjoint Set data structure
• The Ultimate Union-Find: Path compression  

• While performing Find, direct all nodes on the path to the root.
• Example: Find(10)

 

 

int Find(int e)
 if (parent[e] == 0)
  return e
 else
  parent[e] = Find(parent[e])
  return parent[e]

0
2 4

6

1

3 5

7

8

9 10

11

0

2 4

6

1

3 5

7

8

9

10

11
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Disjoint Set data structure
• The Ultimate Union-Find: Path compression  

• Any single find can still be O(log(n)), 
     but later finds on the same path are faster

• Union, Find:  “almost linear” total time
• Amortized O(1) time for each Union or Find.

int Find(int e)
 if (parent[e] == 0)
  return e
 else
  parent[e] = Find(parent[e])
  return parent[e]
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Check Connected Components by Disjoint Sets

We would like to find the connected components by using Disjoint 
Sets (Union Find).

List all edges in this graph (in alphabetical order):

{A,B}, {A,H}, {A,I}, {B,I}, {C,J}, {D,E}, {D,K}, {E,F},
{E,K}, {G,H}, {G,I}, {H,I}
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{A, B}
{A, H}
{A, I}
{B, I}
{C, J}
{D, E}
{D, K}
{E, F}
{E, K}
{G, H}
{G, I}
{H, I}

{A}, {B}, {C}, {D}, {E}, {F}, {G}, {H}, {I}, {J}, {K}

Initialization: 
Direct all nodes on the path to the root. For 
each vertex 𝑢! ∈ [𝐴, 𝐿], each vertex direct 
to themselves. 

𝑢!

Check Connected Components by Disjoint Sets
Going through the example again with disjoint sets. We 
start with eleven singletons.
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We start by adding edge {A, B} {A, B}
{A, H}
{A, I}
{B, I}
{C, J}
{D, E}
{D, K}
{E, F}
{E, K}
{G, H}
{G, I}
{H, I}

{A, B}, {C}, {D}, {E}, {F}, {G}, {H}, {I}, {J}, {K}

𝐴

B

Check Connected Components by Disjoint Sets
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We add edge {A, H}, {A, I} {A, B}
{A, H}
{A, I}
{B, I}
{C, J}
{D, E}
{D, K}
{E, F}
{E, K}
{G, H}
{G, I}
{H, I}

{A, B, H, I}, {C}, {D}, {E}, {F}, {G}, {J}, {K}
Add {A,H}: According to the rule of Union 
by Size, make smaller tree H point to 
bigger one’s root A.

𝐴

BH

Add {A,I}: 

BH

𝐴

I

Check Connected Components by Disjoint Sets
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We add edge {B, I}, {C, J} {A, B}
{A, H}
{A, I}
{B, I}
{C, J}
{D, E}
{D, K}
{E, F}
{E, K}
{G, H}
{G, I}
{H, I}

{A, B, H, I}, {C, J}, {D}, {E}, {F}, {G}, {K}

Add {B,I}: B and I are already in the tree, and they all 
point to the root. Thus, nothing will be changed.

Add {C,J}: 

BH

𝐴

I

𝐶

JBH

𝐴

I

Check Connected Components by Disjoint Sets
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We add edge {D, E}, {D, K} {A, B}
{A, H}
{A, I}
{B, I}
{C, J}
{D, E}
{D, K}
{E, F}
{E, K}
{G, H}
{G, I}
{H, I}

{A, B, H, I}, {C, J}, {D, E, K}, {F}, {G}

Add {D,E}:

Add {D,K}: 

𝐶

JBH

𝐴

I

𝐶

JBH

𝐴

I

𝐷

E

𝐷

EK

Check Connected Components by Disjoint Sets
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We add edge {E, F}, {E, K} {A, B}
{A, H}
{A, I}
{B, I}
{C, J}
{D, E}
{D, K}
{E, F}
{E, K}
{G, H}
{G, I}
{H, I}

{A, B, H, I}, {C, J}, {D, E, F, K}, {G}

Add {E,F}:

Add {E,K}: E, K are already pointed to root D.
Thus, there is nothing change of adding {E,K}

𝐶

JBH

𝐴

I

𝐷

EK F

𝐶

JBH

𝐴

I

𝐷

EK F

Check Connected Components by Disjoint Sets
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We add edge {G, H}, {G, I}, {H, I} {A, B}
{A, H}
{A, I}
{B, I}
{C, J}
{D, E}
{D, K}
{E, F}
{E, K}
{G, H}
{G, I}
{H, I}

At last we get result: {A, B, G, H, I}, {C, J}, {D, E, F, K}

Add {G, H}:

Add {G, I}, {H, I}: G, H, I are already pointed to root A.
Thus, there is nothing change of adding {G, I}, {H, I}.

𝐶

JBH

𝐴

I

𝐷

EK FG

𝐶

JBH

𝐴

I

𝐷

EK FG

Check Connected Components by Disjoint Sets
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Build the index: O(|V|+|E|)

Space: O(|V|)

Good for incremental connected components maintenance~

Coding practice~

Check Connected Components by Disjoint Sets

115 UNSW COMP9312_23T2



Topological 
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Topological Sort
In this topic, we will discuss:
• Motivations
• The definition of a directed acyclic graph (DAG)
• Describe a topological sort and applications
• Describe the algorithm
• Do a run-time and memory analysis of the algorithm
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Motivation

Given a set of tasks with dependencies,
is there an order in which we can complete the tasks?

Dependencies form a partial ordering
A partial ordering on a number of objects can
be represented as a directed acyclic graph (DAG)
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• A directed acyclic graph (DAG) is a directed graph with 
no directed cycles. 

https://en.wikipedia.org/wiki/Directed_acyclic_graph

Directed acyclic graph (DAG)
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Motivation

Cycles in dependencies can cause issues...

http://xkcd.com/754/

Another example: the precedence graph in database transaction management

120 UNSW COMP9312_23T2



Restriction of paths in DAGs
Observation: 

 In a DAG, given two different vertices vj and vk,
there cannot both be a path from vj to vk and a path from vk to vj.

 Definition:
 A topological sorting of the vertices in a DAG is an ordering

v1, v2, v3, …, v|V| 
 such that if there is a path from vj to vk , vj appears before vk.
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Definition of topological sorting

Given this DAG, a topological sort is
  H, C, I, D, J, A, F, B, G, K, E, L
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Example
There are paths from H, C, I, D and J to F, so all these must come before F 
in a topological sort
   H, C, I, D, J, A, F, B, G, K, E, L

 Clearly, this sorting need not be unique
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Applications
The following is a task graph for getting dressed:

 One topological sort is:
briefs, pants, wallet, keys, belt, socks, shoes, shirt, tie, jacket, iPod, watch

 Another topological sort is:
 briefs, socks, pants, shirt, belt, tie, jacket, wallet, keys, iPod, watch, shoes
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Topological Sort

Idea:
• Given a DAG V, make a copy W and iterate:

• Find a vertex v in W with in-degree zero (i.e., the source vertex)
• Let v be the next vertex in the topological sort
• Continue iterating with the vertex-induced sub-graph W \ {v}

Possible solutions:
 C, H, D, A, B, I, J, F, G, E, K, L

H, I, J, C, D, F, G, K, L, A, B, E

Example:
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Analysis
What are the tools necessary for a topological sort?
• We must know and be able to update the in-degrees of each of 

the vertices
• We could do this with a table of the in-degrees of

each of the vertices
• This requires O(|V|) memory

A 1
B 1
C 0
D 2
E 4
F 2
G 1
H 0
I 1
J 1
K 1
L 2
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Analysis
We must iterate at least |V| times, so the run-time must 
be O(|V|)

We need to find vertices with in-degree zero
• We could loop through the array with each iteration
• The run time would be O(|V|2)

 

A 1
B 1
C 0
D 2
E 4
F 2
G 1
H 0
I 1
J 1
K 1
L 2
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Analysis
How did we do with BFS and DFS?
• Use a queue (or other container) to temporarily store those 

vertices with in-degree zero
• Each time the in-degree of a vertex is decremented to

zero, push it onto the queue

A 1
B 1
C 0
D 2
E 4
F 2
G 1
H 0
I 1
J 1
K 1
L 2
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Analysis
What are the run times associated with the queue?
• Initially, we must scan through each of the vertices: O(|V|)
• For each vertex, we will have to push onto and pop off the 

queue once, also O(|V|)

A 1
B 1
C 0
D 2
E 4
F 2
G 1
H 0
I 1
J 1
K 1
L 2
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Analysis
Finally, each value in the in-degree table is associated with an edge
• Here, |E| = 16
• Each of the in-degrees must be decremented to zero
• The run time of these operations is O(|E|)
• If we are using an adjacency matrix: O(|V|2)
• If we are using an adjacency list: O(|E|)

A 1
B 1
C 0

D 2
E 4
F 2
G 1
H 0
I 1
J 1
K 1
L 216 +

+
+
+
+
+
+
+
+
+
+
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Analysis
Therefore, the run time of a topological sort is:
 O(|V| + |E|) if we use an adjacency list
 O(|V|2) if we use an adjacency matrix
 and the additional memory requirements is O(|V|)

A 1
B 1
C 0
D 2
E 4
F 2
G 1
H 0
I 1
J 1
K 1
L 2
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Analysis
What happens if at some step, all remaining vertices 
have an in-degree greater than zero?
• There must be at least one cycle within that sub-set of vertices

Consequence:  we now have an O(|V| + |E|) algorithm for 
determining if a graph has a cycle

A 1
B 1
C 0
D 2
E 4
F 2
G 1
H 0
I 1
J 1
K 1
L 2
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Implementation
Thus, to implement a topological sort:
• Allocate memory for and initialize an array of in-degrees
• Create a queue and initialize it with all vertices that have in-degree zero

While the queue is not empty:
• Pop a vertex from the queue
• Decrement the in-degree of each neighbor
• Those neighbors whose in-degree was decremented to zero are pushed onto the queue
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Example
With the previous example, we initialize:
• The array of in-degrees
• The queue A 1

B 1
C 0
D 2
E 4
F 2
G 1
H 0
I 1
J 1
K 1
L 2

The queue is empty

Queue:
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Example
Stepping through the table, push all source vertices into the queue

A 1
B 1
C 0
D 2
E 4
F 2
G 1
H 0
I 1
J 1
K 1
L 2

Queue:
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Example
Stepping through the table, push all source vertices into the queue

A 1
B 1
C 0
D 2
E 4
F 2
G 1
H 0
I 1
J 1
K 1
L 2

C HQueue:
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Example
Pop the front of the queue

A 1
B 1
C 0
D 2
E 4
F 2
G 1
H 0
I 1
J 1
K 1
L 2

C HQueue:
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Example
Pop the front of the queue
• C has one neighbor:  D

A 1
B 1
C 0
D 2
E 4
F 2
G 1
H 0
I 1
J 1
K 1
L 2

C HQueue:
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Example
Pop the front of the queue
• C has one neighbor:  D
• Decrement its in-degree A 1

B 1
C 0
D 1
E 4
F 2
G 1
H 0
I 1
J 1
K 1
L 2

C HQueue:
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Example
Pop the front of the queue

A 1
B 1
C 0
D 1
E 4
F 2
G 1
H 0
I 1
J 1
K 1
L 2

C HQueue:
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Example
Pop the front of the queue
• H has two neighbors:  D and I

A 1
B 1
C 0
D 1
E 4
F 2
G 1
H 0
I 1
J 1
K 1
L 2

C HQueue:
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Example
Pop the front of the queue
• H has two neighbors:  D and I
• Decrement their in-degrees A 1

B 1
C 0
D 0
E 4
F 2
G 1
H 0
I 0
J 1
K 1
L 2

C HQueue:
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Example
Pop the front of the queue
• H has two neighbors:  D and I
• Decrement their in-degrees

• Both are decremented to zero, so push them onto the queue

A 1
B 1
C 0
D 0
E 4
F 2
G 1
H 0
I 0
J 1
K 1
L 2

C HQueue:
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Example
Pop the front of the queue
• H has two neighbors:  D and I
• Decrement their in-degrees

• Both are decremented to zero, so push them onto the queue

A 1
B 1
C 0
D 0
E 4
F 2
G 1
H 0
I 0
J 1
K 1
L 2

C H D IQueue:
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Example
Pop the front of the queue

A 1
B 1
C 0
D 0
E 4
F 2
G 1
H 0
I 0
J 1
K 1
L 2

C H D IQueue:
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Example
Pop the front of the queue
• D has three neighbors:  A, E and F

A 1
B 1
C 0
D 0
E 4
F 2
G 1
H 0
I 0
J 1
K 1
L 2

C H D IQueue:
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Example
Pop the front of the queue
• D has three neighbors:  A, E and F
• Decrement their in-degrees A 0

B 1
C 0
D 0
E 3
F 1
G 1
H 0
I 0
J 1
K 1
L 2

C H D IQueue:
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Example
Pop the front of the queue
• D has three neighbors:  A, E and F
• Decrement their in-degrees

• A is decremented to zero, so push it onto the queue

A 0
B 1
C 0
D 0
E 3
F 1
G 1
H 0
I 0
J 1
K 1
L 2

C H D I AQueue:
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Example
Pop the front of the queue

A 0
B 1
C 0
D 0
E 3
F 1
G 1
H 0
I 0
J 1
K 1
L 2

C H D I AQueue:
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Example
Pop the front of the queue
• I has one neighbor:  J

A 0
B 1
C 0
D 0
E 3
F 1
G 1
H 0
I 0
J 1
K 1
L 2

C H D I AQueue:
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Example
Pop the front of the queue
• I has one neighbor:  J
• Decrement its in-degree A 0

B 1
C 0
D 0
E 3
F 1
G 1
H 0
I 0
J 0
K 1
L 2

C H D I AQueue:
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Example
Pop the front of the queue
• I has one neighbor:  J
• Decrement its in-degree

• J is decremented to zero, so push it onto the queue

A 0
B 1
C 0
D 0
E 3
F 1
G 1
H 0
I 0
J 0
K 1
L 2

C H D I A JQueue:
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Example
Pop the front of the queue

A 0
B 1
C 0
D 0
E 3
F 1
G 1
H 0
I 0
J 0
K 1
L 2

C H D I A JQueue:
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Example
Pop the front of the queue
• A has one neighbor:  B

A 0
B 1
C 0
D 0
E 3
F 1
G 1
H 0
I 0
J 0
K 1
L 2

C H D I A JQueue:
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Example
Pop the front of the queue
• A has one neighbor:  B
• Decrement its in-degree A 0

B 0
C 0
D 0
E 3
F 1
G 1
H 0
I 0
J 0
K 1
L 2

C H D I A JQueue:
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Example
Pop the front of the queue
• A has one neighbor:  B
• Decrement its in-degree

• B is decremented to zero, so push it onto the queue

A 0
B 0
C 0
D 0
E 3
F 1
G 1
H 0
I 0
J 0
K 1
L 2

C H D I A J BQueue:
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Example
Pop the front of the queue

A 0
B 0
C 0
D 0
E 3
F 1
G 1
H 0
I 0
J 0
K 1
L 2

C H D I A J BQueue:
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Example
Pop the front of the queue
• J has one neighbor:  F

A 0
B 0
C 0
D 0
E 3
F 1
G 1
H 0
I 0
J 0
K 1
L 2

C H D I A J BQueue:
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Example
Pop the front of the queue
• J has one neighbor:  F
• Decrement its in-degree A 0

B 0
C 0
D 0
E 3
F 0
G 1
H 0
I 0
J 0
K 1
L 2

C H D I A J BQueue:
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Example
Pop the front of the queue
• J has one neighbor:  F
• Decrement its in-degree

• F is decremented to zero, so push it onto the queue

A 0
B 0
C 0
D 0
E 3
F 0
G 1
H 0
I 0
J 0
K 1
L 2

C H D I A J B FQueue:
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Example
Pop the front of the queue

A 0
B 0
C 0
D 0
E 3
F 0
G 1
H 0
I 0
J 0
K 1
L 2

C H D I A J B FQueue:
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Example
Pop the front of the queue
• B has one neighbor:  E

A 0
B 0
C 0
D 0
E 3
F 0
G 1
H 0
I 0
J 0
K 1
L 2

C H D I A J B FQueue:
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Example
Pop the front of the queue
• B has one neighbor:  E
• Decrement its in-degree

C H D I A J B FQueue:

A 0
B 0
C 0
D 0
E 2
F 0
G 1
H 0
I 0
J 0
K 1
L 2
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Example
Pop the front of the queue

C H D I A J B FQueue:

A 0
B 0
C 0
D 0
E 2
F 0
G 1
H 0
I 0
J 0
K 1
L 2
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Example
Pop the front of the queue
• F has three neighbors:  E, G and K

C H D I A J B FQueue:

A 0
B 0
C 0
D 0
E 2
F 0
G 1
H 0
I 0
J 0
K 1
L 2
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Example
Pop the front of the queue
• F has three neighbors:  E, G and K
• Decrement their in-degrees

C H D I A J B FQueue:

A 0
B 0
C 0
D 0
E 1
F 0
G 0
H 0
I 0
J 0
K 0
L 2
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Example
Pop the front of the queue
• F has three neighbors:  E, G and K
• Decrement their in-degrees

• G and K are decremented to zero,
                   so push them onto the queue

C H D I A J B F G KQueue:

A 0
B 0
C 0
D 0
E 1
F 0
G 0
H 0
I 0
J 0
K 0
L 2

167 UNSW COMP9312_23T2



Example
Pop the front of the queue

C H D I A J B F G KQueue:

A 0
B 0
C 0
D 0
E 1
F 0
G 0
H 0
I 0
J 0
K 0
L 2
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Example
Pop the front of the queue
• G has two neighbors:  E and L

C H D I A J B F G KQueue:

A 0
B 0
C 0
D 0
E 1
F 0
G 0
H 0
I 0
J 0
K 0
L 2
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Example
Pop the front of the queue
• G has two neighbors:  E and L
• Decrement their in-degrees

C H D I A J B F G KQueue:

A 0
B 0
C 0
D 0
E 0
F 0
G 0
H 0
I 0
J 0
K 0
L 1
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Example
Pop the front of the queue
• G has two neighbors:  E and L
• Decrement their in-degrees

• E is decremented to zero, so push it onto the queue

C H D I A J B F G K EQueue:

A 0
B 0
C 0
D 0
E 0
F 0
G 0
H 0
I 0
J 0
K 0
L 1
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Example
Pop the front of the queue

C H D I A J B F G K EQueue:

A 0
B 0
C 0
D 0
E 0
F 0
G 0
H 0
I 0
J 0
K 0
L 1
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Example
Pop the front of the queue
• K has one neighbors:  L

C H D I A J B F G K EQueue:

A 0
B 0
C 0
D 0
E 0
F 0
G 0
H 0
I 0
J 0
K 0
L 1
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Example
Pop the front of the queue
• K has one neighbors:  L
• Decrement its in-degree

C H D I A J B F G K EQueue:

A 0
B 0
C 0
D 0
E 0
F 0
G 0
H 0
I 0
J 0
K 0
L 0
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Example
Pop the front of the queue
• K has one neighbors:  L
• Decrement its in-degree

• L is decremented to zero, so push it onto the queue

C H D I A J B F G K E LQueue:

A 0
B 0
C 0
D 0
E 0
F 0
G 0
H 0
I 0
J 0
K 0
L 0
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Example
Pop the front of the queue

C H D I A J B F G K E LQueue:

A 0
B 0
C 0
D 0
E 0
F 0
G 0
H 0
I 0
J 0
K 0
L 0
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Example
Pop the front of the queue
• E has no neighbors—it is a sink

C H D I A J B F G K E LQueue:

A 0
B 0
C 0
D 0
E 0
F 0
G 0
H 0
I 0
J 0
K 0
L 0
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Example
Pop the front of the queue

C H D I A J B F G K E LQueue:

A 0
B 0
C 0
D 0
E 0
F 0
G 0
H 0
I 0
J 0
K 0
L 0
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Example
Pop the front of the queue
• L has no neighbors—it is also a sink

C H D I A J B F G K E LQueue:

A 0
B 0
C 0
D 0
E 0
F 0
G 0
H 0
I 0
J 0
K 0
L 0
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Example
The queue is empty, so we are done

C H D I A J B F G K E LQueue:

A 0
B 0
C 0
D 0
E 0
F 0
G 0
H 0
I 0
J 0
K 0
L 0
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Example
The enqueue order is the topological sorting

C H D I A J B F G K E L

A 0
B 0
C 0
D 0
E 0
F 0
G 0
H 0
I 0
J 0
K 0
L 0
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Exercise

Can you compute the topological sort of the following graph?

A

D

B
C

E
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Exercise
Initialize the array of in-degrees and the queue

A 0
B 1
C 2
D 1
E 2

The queue is empty

Queue:

A

D

B
C

E
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Exercise
Push A onto the queue

A

D

B
C

E

A

A 0
B 1
C 2
D 1
E 2

Queue:
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Exercise
Pop the front of the queue
– A has two neighbors: D and E

A

A 0
B 1
C 2
D 1
E 2

Queue:

A

D

B
C

E
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Exercise
Pop the front of the queue
– A has two neighbors: D and E
– Decrement their in-degree

A

A 0
B 1
C 2
D 0
E 1

Queue:

A

D

B
C

E
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A

D

B
C

E

Exercise
Pop the front of the queue
– A has two neighbors: D and E
– Decrement their in-degree

A DQueue:

A 0
B 1
C 2
D 0
E 1

D is decremented to zero, so push it onto the queue
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A

D

B
C

E

Exercise
Pop the front of the queue
– D has two neighbors: B and C

A D

A 0
B 1
C 2
D 0
E 1

Queue:
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A

D

B
C

E

Exercise
Pop the front of the queue
– D has two neighbors: B and C
– Decrement their in-degree

A D

A 0
B 0
C 1
D 0
E 1

Queue:
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A

D

B
C

E

Exercise
Pop the front of the queue
– D has two neighbors: B and C
– Decrement their in-degree

A D BQueue:

A 0
B 0
C 1
D 0
E 1

B is decremented to zero, so push it onto the queue
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A

D

B
C

E

Exercise
Pop the front of the queue
– B has one neighbor: C

A D B

A 0
B 0
C 1
D 0
E 1

Queue:
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A

D

B
C

E

Exercise
Pop the front of the queue
– B has one neighbor: C
– Decrement its in-degree

A D B

A 0
B 0
C 0
D 0
E 1

Queue:
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A

D

B
C

E

Exercise
Pop the front of the queue
– B has one neighbor: C
– Decrement its in-degree

A 0
B 0
C 0
D 0
E 1

A D B CQueue:

C is decremented to zero, so push it onto the queue
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A

D

B
C

E

Exercise
Pop the front of the queue
– C has one neighbor: E

A D B C

A 0
B 0
C 0
D 0
E 1

Queue:
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A

D

B
C

E

Exercise
Pop the front of the queue
– C has one neighbor: E
– Decrement its in-degree

A D B C

A 0
B 0
C 0
D 0
E 0

Queue:
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A

D

B
C

E

Exercise
Pop the front of the queue
– C has one neighbor: E
– Decrement its in-degree

A 0
B 0
C 0
D 0
E 0

A D B C EQueue:

E is decremented to zero, so push it onto the queue
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A

D

B
C

E

Exercise
Pop the front of the queue
– E has no neighbors

A D B C E

A 0
B 0
C 0
D 0
E 0

Queue:
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A

D

B
C

E

Exercise
The queue is empty, so we are done

A D B C E

A 0
B 0
C 0
D 0
E 0

Queue:
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Learning outcomes

• Understand the BFS and DFS algorithms

• Understand the algorithms for computing connected 

components (using BFS and Disjoint-set)

• Know the concept of topological sort and how to compute it
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