Graph Traversal

COMP9312_23T2

Clutline

= BFS
= DFS
= Connectivity

= Topological sort

Breath-first and
depth-first traversals

Strategies

Traversals of graphs are also called searches

Applications of BFS
= Shortest Path

Applications of DFS

= Strongly connected component
= Topological Order

A quick view:
https://seanperfecto.qgithub.io/BFS-DFS-Pathfinder/

4 UNSW COMP9312_23T2

https://seanperfecto.github.io/BFS-DFS-Pathfinder/

Breadth-first traversal

Consider implementing a breadth-first traversal on a graph:
« Choose any vertex, mark it as visited and push it onto queue
« While the queue is not empty:

« Pop to top vertex v from the queue

» For each vertex adjacent to v that has not been visited:

« Mark it visited, and
» Push it onto the queue

This continues until the queue is empty
* Note: if there are no unvisited vertices, the graph is connected

S UNSW COMP9312_23T2

Breadth-first traversal

An implementation Can void Graph::breadth_first_traversal(Vertex first
usSe a queue sritex (Ivl, false);

6 UNSW COMP9312_23T2

Example

Consider this graph

7 UNSW COMP9312_23T2

Example

Performing a breadth-first traversal
* Push the first vertex onto the queue

8 UNSW COMP9312_23T2

Example

Performing a breadth-first traversal
 Pop Aand push B, Cand E

9 UNSW COMP9312_23T2

Example

Performing a breadth-first traversal:
« Pop Band push D

10 UNSW COMP9312_23T2

Example

Performing a breadth-first traversal:
* Pop C and push F

11 UNSW COMP9312_23T2

Example

Performing a breadth-first traversal:
* Pop E and push G and H

12 UNSW COMP9312_23T2

Example

Performing a breadth-first traversal:
« PopD

13 UNSW COMP9312_23T2

Example

Performing a breadth-first traversal:
* PopF
A B CED,F

14 UNSW COMP9312_23T2

Example

Performing a breadth-first traversal:

* Pop G and push |
A B CED,FG

15 UNSW COMP9312_23T2

Example

Performing a breadth-first traversal:
* PopH
A B CEDFGH

16 UNSW COMP9312_23T2

Example

Performing a breadth-first traversal:
* Pop |, The queue is empty: we are finished
A B CED,FG,H,I

17 UNSW COMP9312_23T2

BFS

Coding practice~

Number of layers in BFS tree: the longest shortest distance

18 UNSW COMP9312_23T2

Depth-First Traversal

Consider implementing a depth-first traversal on a graph:

« Choose any vertex, mark it as visited
* From that vertex:
« If there is another adjacent vertex not yet visited, go to it

« Otherwise, go back to the last vertex that has not had all of its adjacent vertices visited and
continue from there

« Continue until no visited vertices have unvisited adjacent vertices

Two implementations:
 Recursive approach (a statement in a function calls itself repeatedly)

« lterative approach (a loop repeatedly executes until the controlling condition becomes
false)

19 UNSW COMP9312_23T2

Recursive depth-first traversal

A recursive implementation uses the call stack for memory:

visited = [False] * n

def DFS_recursive(u):
print(u)
visited[u] = True

for 1 in range(offset[u],offset[u+l]):
nbr_of u = csr_edges[i]
if visited[nbxr_of_u]: continue
DFS_recursive(nbxr_of_u)

20 UNSW COMP9312_23T2

Iterative depth-first traversal

An iterative implementation enative
def DFs_iterative(u):

can use a stack visited = [False] * n

stack = []
stack.append(u)

while (len(stack)):
s = stack.pop()

if(visited[u]):
continue;

visited[u] = True

for i in range(offset[s],offset[s+1]):
nbx_of_s = csr_edges[i]
if visited[nbr_of_s]: continue
stack.append(nbx_of_s)

21 UNSW COMP9312_23T2

Example

Perform a recursive depth-first traversal on this same graph

22 UNSW COMP9312_23T2

Example

Performing a recursive depth-first traversal:
* Visit the first node

23 UNSW COMP9312_23T2

Example

Performing a recursive depth-first traversal:
A has an unvisited neighbor

24 UNSW COMP9312_23T2

Example

Performing a recursive depth-first traversal:
B has an unvisited neighbor

25 UNSW COMP9312_23T2

Example

Performing a recursive depth-first traversal:
 C has an unvisited neighbor

26 UNSW COMP9312_23T2

Example

Performing a recursive depth-first traversal:
* D has no unvisited neighbors, so we returnto C

27 UNSW COMP9312_23T2

Example

Performing a recursive depth-first traversal:

 E has an unvisited neighbor
A B,CD,E,G

28 UNSW COMP9312_23T2

Example

Performing a recursive depth-first traversal:

* G has an unvisited neighbor
A B,CD,E,G,I

29 UNSW COMP9312_23T2

Example

Performing a recursive depth-first traversal:

* | has an unvisited neighbor
A B CDEG,IH

30 UNSW COMP9312_23T2

Example

Performing a recursive depth-first traversal:

» We recurse back to C which has an unvisited neighbour
A B CDEGIHF

31 UNSW COMP9312_23T2

Example

Performing a recursive depth-first traversal:

« We recurse finding that no other nodes have unvisited neighbours
A B CDEG,ILH,F

32 UNSW COMP9312_23T2

Comparing BFS and DFS

The order can differ greatly
 An iterative depth-first traversal may also be different again

BFS: A,B,C,E,D,F, G, H,|I Recursive DFS: A,B,C,D,E, G, |, H, F

33 UNSW COMP9312_23T2

Quick Quiz

Can you show the result of iterative
depth-first traversal?

def DFs_iterative(u):
visited = [False] * n
stack = []
stack.append(u)

while (len(stack)):
s = stack.pop()

if(visited[u]):
continue;

visited[u] = True

for i in range(offset[s],offset[s+1]):
nbx_of_s = csr_edges[i]
if visited[nbr_of_s]: continue
stack.append(nbx_of_s)

34 UNSW COMP9312_23T2

Example

Performing an iterative depth-first traversal:
 Push the first vertex onto the stack

35 UNSW COMP9312_23T2

Example

Performing an iterative depth-first traversal:
 Pop Aand push B, Cand E

36 UNSW COMP9312_23T2

Example

Performing an iterative depth-first traversal:
* Pop E and push C, G, and H

OO

37 UNSW COMP9312_23T2

Example

Performing an iterative depth-first traversal:
* Pop H, and push |

OO —

38 UNSW COMP9312_23T2

Example

Performing an iterative depth-first traversal:
* Pop | and push G

WIOO|O|®

39 UNSW COMP9312_23T2

Example

Performing an iterative depth-first traversal:
* Pop G

DIOO|®

40 UNSW COMP9312_23T2

Example

Performing an iterative depth-first traversal:
* Pop G again, and skip G since it is visited

41 UNSW COMP9312_23T2

Example

Performing an iterative depth-first traversal:
« PopC,andadd B, D, F

WO O

42 UNSW COMP9312_23T2

Example

Performing an iterative depth-first traversal:
* PopF
AEHIGCF

W O(W| O

43 UNSW COMP9312_23T2

Example

Performing an iterative depth-first traversal:
 Pop D and add B

WO 0| @

44 UNSW COMP9312_23T2

Example

Performing an iterative depth-first traversal:
 Pop B

WO 0| @

Pop and skip all remining vertices in the stack
since they are already visited

45 UNSW COMP9312_23T2

Complexity Analysis

We have to track which vertices have been visited requiring
oC|V|) memory

The time complexity cannot be better than and should not be
worsethan 0C|V]| + |E]|)
Connected graphs simplify thisto OC|E|) - Why?

46 UNSW COMP9312_23T2

DFS: Recursive VS stack-based

Which one is better?

Coding practice~

47 UNSW COMP9312_23T2

Summary

This topic covered graph traversals

Considered breadth-first and depth-first traversals

Depth-first traversals can recursive or iterative

Considered an example with both implementations

They are also called searches

48

UNSW COMP9312_23T2

Recent Research on DFS/BFS

External Memory Algorithms
If there is no enough memory to store the whole graph,
how to compute DFS

Off-Line Storage 4‘.\ A P 7’
oy o &g&‘s’ ~ 2

¢ Ry

SIZE
https://dl.acm.org/doi/10.1145/2723372.2723740

49

Optional

UNSW COMP9312_23T2

Recent Research on DFS/BFS ellithtl

Dynamic Graphs
When graph updates (new edge inserts or old edge removes)

Compute DFS from scratch

VS
Update DFS tree

(a) The graph G (b) A DFS-Tree T of G

https://dl.acm.org/doi/10.14778/3364324.3364329

50 UNSW COMP9312_23T2

Recent Research on DFS/BFS ellithtl

Distributed Algorithms
The information (neighbors) of different vertices locate in different machines.

Distributed DFS algorithm is hard.

51 UNSW COMP9312_23T2

Connectivity

Connectivity

We will use graph traversals to determine:
« Whether one vertex is connected to another
» The connected sub-graphs of a graph

First, let us determine whether one vertex is connected to another
* v;is connected to v, if there is a path from v; to v,

Strategy:
- Perform a breadth-first traversal starting at v;

« While looping, if the vertex v, ever found to be adjacent to the front of the queue, return
true

* If the loop ends, return false

53 UNSW COMP9312_23T2

Determining Connections

Is A connected to D?

54 UNSW COMP9312_23T2

Determining Connections

Vertex A is marked as visited and pushed onto the queue

S5 UNSW COMP9312_23T2

Determining Connections

Pop the head, A, and mark and push B, F and G

56 UNSW COMP9312_23T2

Determining Connections

Pop B and mark and, in the left graph, mark and push H

« On the right graph, B has no unvisited adjacent vertices

57 UNSW COMP9312_23T2

Determining Connections

Popping F results in the pushing of E

58 UNSW COMP9312_23T2

Determining Connections

In either graph, G has no adjacent vertices that are unvisited

59 UNSW COMP9312_23T2

Determining Connections

Popping H on the left graph results in C, |, D being pushed

EIC|I|D
In the left graph, A is connected to D, The queue on the right is empty. We determine
since D is in the queue A is not connected to D

60 UNSW COMP9312_23T2

Connectivity

Coding practice~

Any better idea?
= Bidirectional search

64 UNSW COMP9312_23T2

Connected Components

If we continued the traversal, we would find all vertices that are connected to A

Suppose we want to find the connected components of the graph

« While there are unvisited vertices:
» Select an unvisited vertex and perform a traversal on that vertex
« Each vertex that is visited in that traversal is added to the set initially containing the initial unvisited vertex

e Continue until all vertices are visited

65 UNSW COMP9312_23T2

Connected Components

Here we start with a set of singletons

66 UNSW COMP9312_23T2

Connected Components

The vertex A is unvisited, so we start with it

67 UNSW COMP9312_23T2

Connected Components

Take the union of with its adjacent vertices: {A, B, H, I}

68 UNSW COMP9312_23T2

Connected Components

As the traversal continues, we take the union of the set {G} with the set
containing H: {A, B, G, H, I}

 The traversal is finished

69 UNSW COMP9312_23T2

Connected Components

Start another traversal with C: this defines a new set {C}

70 UNSW COMP9312_23T2

Connected Components

We take the union of {C} and its adjacent vertex J: {C, J}
« This traversal is finished

71

UNSW COMP9312_23T2

Connected Components

We start again with the set {D}

72 UNSW COMP9312_23T2

Connected Components

K and E are adjacent to D, so take the unions creating {D, E, K}

73 UNSW COMP9312_23T2

Connected Components

Finally, during this last traversal we find that F is adjacentto E
« Take the union of {F} with the set containing E: {D, E, F, K}

74

UNSW COMP9312_23T2

Connected Components

All vertices are visited, so we are done
« There are three connected sub-graphs {A, B, G, H, I}, {C, J}, {D, E, F, K}
(B)

75

UNSW COMP9312_23T2

Tracking Unvisited Vertices

The time complexity to find an unvisited vertex: o(")

How do you implement a list of unvisited vertices so as to:

« Find an unvisited vertex in O(1) time
- Remove a vertex that has been visited from this list in O(1) time?

The solution will use O(|V]) additional memory

Coding practice~

76

UNSW COMP9312_23T2

Tracking Unvisited Vertices

Create two arrays:

* One array, unvisited, will contain the unvisited vertices
* The other, loc_in_unvisited, will contain the location of vertex v; in the first array

0 1 2 3 4 5 6 7 8 9 10
A B C D E F G H I J K

A B C D E F G H | J K
0 1 2 3 4 S 6 7 8 9 10

77 UNSW COMP9312_23T2

Tracking Unvisited Vertices

Suppose we visit D

« Disinentry 3
0 1 2 3 4 5 6 7 8 9 10
A B C D E F G H I J K
A B C D E F G H | J K
0 1 2 3 4) 6 7 8 9 10

78 UNSW COMP9312_23T2

Tracking Unvisited Vertices

Suppose we visit D

« Disinentry 3
« Copy the last unvisited vertex into this location and update the location array for this value
0 1 2 3 4 10
A B C K E F B
A B C D E K
0 1 2 4 S 3

79

UNSW COMP9312_23T2

Tracking Unvisited Vertices

Suppose we visit G
« Gisinentry 6

10

80

UNSW COMP9312_23T2

Tracking Unvisited Vertices

Suppose we visit G
« Gisinentry 6
« Copy the last unvisited vertex into this location and update the location array for this value

0 1 2 3 4 5 6 7 8 9 10
A B C K E F J H I

A B C D E F G H | J K
0 1 2 4 S 7 8 6 3

8l UNSW COMP9312_23T2

Tracking Unvisited Vertices

Suppose we now visit K
 Kisinentry 3

10

82

UNSW COMP9312_23T2

Tracking Unvisited Vertices

Suppose we now visit K
 Kisinentry 3
« Copy the last unvisited vertex into this location and update the location array for this value

0 1 2 3 4 5 6 7 8 9 10
A B C I E F J H

A B C D E F G H | J K
0 1 2 4 S 7 3 6

83 UNSW COMP9312_23T2

Tracking Unvisited Vertices

If we want to find an unvisited vertex, we simply return the last entry of the

first array and return it

10

84

UNSW COMP9312_23T2

Tracking Unvisited Vertices

In this case, an unvisited vertex is H

* Removing itis trivial: just decrement the count of unvisited vertices

10

85

UNSW COMP9312_23T2

Tracking Unvisited Vertices

The actual algorithm is exceptionally fast:

« The initialization is O(|}))

» Determining if the vertex v, is visited is fast: O(1)

« Marking vertex v, as having been visited is also fast: O(1)
* Returning a vertex that is unvisited is also fast: O(1)

« The idea/structure is for any scenario that needs to remove an
item from a list (without any order limitation).
« The other option: doubly linked list

86

UNSW COMP9312_23T2

Compute connected components with new data structure
We start with two arrays

0

1

2

10

A

B

C

10

87

UNSW COMP9312_23T2

Compute connected components with new data structure

The first unvisited vertex is K
— Remove K

10

UNSW COMP9312_23T2

Compute connected components with new data structure

— Visit D through the edge (K, D)

— Copy J into location 3 and update the location array

10

o =
A B C J E J
A B C D E F J K
0 1 2 4 3

UNSW COMP9312_23T2

Compute connected components with new data structure

— Visit E through the edge (K, E)

— Copy | into location 4 and update the location array

10

UNSW COMP9312_23T2

Compute connected components with new data structure

— Visit F through the edge (E, F)

— Copy H into location 5 and update the location array

10

UNSW COMP9312_23T2

Compute connected components with new data structure

— BFS Queue is empty, one component {D, E, F, K} is found.
— Then, we visit G

— Remove G
0 1 2 3 4 5 6 7 8 9 10
A B C J I H G
A B C D E F G H | J K
0 1 2 5 4 3

92 UNSW COMP9312_23T2

Compute connected components with new data structure

— Visit H through (G, H)

10

— Remove H
0 1 2
A B C
A B C
0 1 2

UNSW COMP9312_23T2

Compute connected components with new data structure

— Visit |
— Remove |

10

UNSW COMP9312_23T2

Compute connected components with new data structure

— VisitA

— Copy J into location 0 and update the location array

0 1 2 3 5 10
ﬁ'¢=\
J B C J
A B C D F K
1 2

UNSW COMP9312_23T2

Compute connected components with new data structure

— Visit B

— Copy C into location 1 and update the location array

10

UNSW COMP9312_23T2

Compute connected components with new data structure

— VisitC
— Remove C

10

UNSW COMP9312_23T2

Compute connected components with new data structure

— Visit J
— Remove J
0 1

10

UNSW COMP9312_23T2

Connected Component Detection

Coding practice~

Any other easier way to implement?

99 UNSW COMP9312_23T2

Disjoint set data structure

Consider n elements, named 1, 2, ..., n

The disjoint set is a collection of sets of elements

Each element is in exactly one set
 sets are disjoint
« to start, each set contains one element

SetName = find (elementName)
 returns the name of the set that contains the given element

union (SetName1, SetName2)
 union two sets together into a new set

How to quickly perform union and find operations?

100 UNSW COMP9312_23T2

Disjoint set data structure

Attempt 1: Quick Find
* Array implementation. elements are 1, ..., N

« SetName[i] = name of the set containing element i

 Pseudo code:

Initialize (int N)
SetName = new int [N+1];
for (int e=1l; e<=N; e++)
SetName[e] = e;

Union (int i, int j)
for (int k=1; k<=N; k++)
if (SetName[k] == j)
SetNamel[k] = 1i;

int Find (int e)
return SetName[e];

101

Time Complexity Analysis:

Find : O(1), Union: O(n)
Note: we usually use n to denote
the number of vertices (i.e., |V|)

and use m to denote the number
of edges (i.e., |E|).

UNSW COMP9312_23T2

Disjoint Set data structure

Attempt 2: Smart Union: Union by Size
 union(u, v): make smaller tree’s root point to bigger one’s root
« That is, make Vv’s root point to u’s if v's tree is smaller.
* Union(4,5), union(6,7), union(4,6) A~

6OB6 4 @
(D

Now perform union(3, 4). Smaller tree made the child node.
/2N

o
@@®@ o o @

102 0 UNSW COMP9312_23T2

Disjoint Set data structure

Initialize (int N)
setsize = new int[N+1];

parent = new int [N+1]; Union by Size:
f‘;)rar(elnntt[ee]_lz’ Oe; = L G link smaller tree to larger one
setsizel[e] = 1;
Lemma: After n union ops, the tree
int Find (int e) height is at most log(n).
while (parent[e] !'= 0)

e = parent[e];
return e;

Union (int i, int j)
i = find (1) ;
j = find(3)’
i1f setsize[i] < setsize[]]
then
setsize[]j] += setsize[i];
parent[i] = J;
else
setsize[i] += setsize[]]:
parent[j] = 1 ; 103 UNSW COMP9312_23T2

Disjoint Set data structure

Time Complexity:

Find(u) takes time proportional to u’s depth in its tree.

When union(u, v) performed, the depth of u only increases if its root becomes
the child of v's root. That only happens if v's tree is larger than u’s tree.

If u's depth grows by 1, its (new) treeSize is > 2 * oldTreeSize
Each increment in depth doubles the size of u’'s tree.
After n union operations, size is at most n, so depth at most log(n).

Theorem: With Union-By-Size, we can do find in O(log n) time and union in
O(log(n)) time.

104 UNSW COMP9312_23T2

Disjoint Set data structure

int Find (int e)
if (parent[e] == 0)
return e
else
parent[e] = Find (parent[e])
return parent|e]

* The Ultimate Union-Find: Path compression

« While performing Find, direct all nodes on the path to the root.
« Example: Find(10)

105 UNSW COMP9312_23T2

Disjoint Set data structure

* The Ultimate Union-Find: Path compression

int Find (int e)
if (parent[e] == 0)
return e
else
parent[e] = Find (parent[e])
return parent|e]

« Any single find can still be O(log(n)).
but later finds on the same path are faster

 Union, Find: “almost linear” total time
« Amortized O(1) time for each Union or Find.

106 UNSW COMP9312_23T2

Check Connected Components by Disjoint Sets

We would like to find the connected components by using Disjoint
Sets (Union Find).

List all edges in this graph (in alphabetical order): ®
{A,B}, {AH}, {Al}, {B,I}, {C,J}, {D,E}, {D,K}, {E,F}, @‘
{E,K}, {G,H}, {G,I}, {H,I} @

107 UNSW COMP9312_23T2

Check Connected Components by Disjoint Sets

Going through the example again with disjoint sets. We iﬁ E&
start with eleven singletons. {A:,)
{A}, {B}, {C}, {D}, {E}, {F}, {G}, {H}, {I}, {J}, {K} {B, I}
Initialization: {C,J}

Direct all nodes on the path to the root. For {D, E}

each vertex u; € [A, L], each vertex direct {D, K}

to themselves. {E, F}

{E, K}

{G, H}

{G, 1}

® {H, 1}
@‘
A—E

108 UNSW COMP9312_23T2

Check Connected Components by Disjoint Sets

We start by adding edge {A, B} — {A, B}
(A, B}, {C}, {D}, {E}, {F}, {G}, {H}, {1}, (U}, {K} {{/j('I*}}

(B, 1}

{,J)

(D, E}
&S (D, K}
(4 €10
(E.K)

(G, H)

{G, 1}
{H, 1}

109 UNSW COMP9312_23T2

Check Connected Components by Disjoint Sets

We add edge {A, H}, {A, I} {A, B}
—> {A, H}

{A,B,H,1},{C}, {D},. {E}, {F}. {G}, {J}, {K}. — (A1)
Add {A,H}: According to the rule of Union (8,1}
by Size, make smaller tree H point to {C’J}
bigger one’s root A. {D: E}
@ o
@ {E, F}

{E, K}

H © (G, H}
Add {Al}: G, 1

@‘ {H, 1}

110 UNSW COMP9312_23T2

Check Connected Components by Disjoint Sets

We add edge {B, 1}, {C, J} {A, B}
{A, B, H, 1}, {C, J}, {D}, {E}, {F}, {G}, {K} {AA' 'l*}

Add {B,I}: B and | are already in the tree, and they all —_— EB' Ii

point to the root. Thus, nothing will be changed. — {C,J}

{D, E}

{D, K}

{E, F}

E K

{G, H}

{G, I}

Add {C,J}:

R SRR

111 UNSW COMP9312_23T2

Check Connected Components by Disjoint Sets

We add edge {D, E}, {D, K} (A, B}
{A, B, H, I}, {C, J}, {D, E, K}, {F}, {G} {A, H}

Add {D,E}: ?31 :;
{C, J}

@ﬁ i i =0
— (D, K

{E, F}

{E, K}

{G, H}

Add {DK}: {G, I}
{H, I}

50 o ob

112 UNSW COMP9312_23T2

Check Connected Components by Disjoint Sets

We add edge {E, F}, {E., K} (A B}

{A, B, H, I}, {C, J},{D, E, F, K}, {G} {A, H}

. {A 1}

Add {E,F}: B

{C, J}

{D, E}

{D, K}

— {E.F)

— {E, K}

{G, H}

Add {E,K}: E, K are already pointed to root D. {G, I}

Thus, there is nothing change of adding {E,K} {H, 1}
@ﬁ @
2 N

®—®

113 UNSW COMP9312_23T2

Check Connected Components by Disjoint Sets

We add edge {G, H}, {G, I}, {H, I} (A B}
Add {G, H}: {{AA, I|4}}
% i % (8,1

{C,J}

{D, E}

{D, K}

Add {G, I}, {H, I}: G, H, | are already pointed to root A. {E, F}

Thus, there is nothing change of adding {G, I}, {H, I}. — {{g E}}

— {G, I}

At last we get result: {A, B, G, H, I}, {C, J}, {D, E, F, K}

114 UNSW COMP9312_23T2

Check Connected Components by Disjoint Sets

Build the index: O(|V|+|E|)
Space: O(|V|)
Good for incremental connected components maintenance~

Coding practice~

115 UNSW COMP9312_23T2

Topological
Sort

Topological Sort

In this topic, we will discuss:
* Motivations
* The definition of a directed acyclic graph (DAG)

» Describe a topological sort and applications
» Describe the algorithm

* Do a run-time and memory analysis of the algorithm

117 UNSW COMP9312_23T2

Motivation

Given a set of tasks with dependencies,
Is there an order in which we can complete the tasks?

Dependencies form a partial ordering

A partial ordering on a number of objects can
be represented as a directed acyclic graph (DAG)

118 UNSW COMP9312_23T2

Directed acyclic graph (DAG)

« A directed acyclic graph (DAG) is a directed graph with

no directed cycles.

https://en.wikipedia.org/wiki/Directed_acyclic_graph

119 UNSW COMP9312_23T2

Motivation

Cycles in dependencies can cause issues...

PAGE 3
DEPARTMENT COURSE DESCRIPTON PREREQS
COMPUTER CPSC 432) INTERMEDIATE COMPILER CPSC Y432
SCIENCE DESIGN, WITH A FOCUS ON
DEPENDENCY RESOLUTION.
— | —

http://xkcd.com/754/

Another example: the precedence graph in database transaction management

120 UNSW COMP9312_23T2

Restriction of paths in DAGs

Observation:

In a DAG, glven two different vertices v; and v,
there cannot both be a path from v, to v, and a path from v to v,

Definition:
A topological sorting of the vertices in a DAG is an ordering
Vi, V2, V3, «e oy V|V]

such that if there is a path from v; to v, v; appears before v,.

121

UNSW COMP9312_23T2

Definition of topological sorting

Given this DAG, a topological sort is
H C I,D,J A FB, G K E,L

™~
7D\F—~G//;E
N N

122 UNSW COMP9312_23T2

Example

There are paths from H, C, |, D and J to F, so all these must come before F
In a topological sort

H,C,I,D,J,AJF,B,G, K E, L

A— B
C“%\/\E

/ °

o |~ K>L

Clearly, this sorting need not be unique

123 UNSW COMP9312_23T2

Applications

The following is a task graph for getting dressed:
(briefs) (socks] (shirt) (watch)

ants tie]

wallet, keys) (belt shoes] [jacket]

One topological sort is:
briefs, pants, wallet, keys, belt, socks, shoes, shirt, tie, jacket, iPod, watch

Another topological sort is:
briefs, socks, pants, shirt, belt, tie, jacket, wallet, keys, iPod, watch, shoes

124 UNSW COMP9312_23T2

Topological Sort

|dea:

« Given a DAG V, make a copy W and iterate:
* Find a vertex v in W with in-degree zero (i.e., the source vertex)
» Let v be the next vertex in the topological sort
« Continue iterating with the vertex-induced sub-graph W\ {v}

Example: A— B
Possible solutions: / \ E
C.H.D,A B,I,J.F.G,EKL / \
H,1,J,C,D,F,G KL AB,E s / \K>L

125 UNSW COMP9312_23T2

Analysis

What are the tools necessary for a topological sort?

« We must know and be able to update the in-degrees of each of
the vertices

« We could do this with a table of the in-degrees of
each of the vertices

 This requires O(|V]) memory

A— B

c- pZ .
/ \F—>G//'
-

126

= A a2 O 2 TN DEIDNDIOI A

rIXl«l—|IT O MM OO0 T >

N

UNSW COMP9312_23T2

Analysis

We must iterate at least |V] times, so the run-time must

be o(|/)

We need to find vertices with in-degree zero

 We could loop through the array with each iteration
* The run time would be O(171?)

127

rxX«|/—|ZT G MM OO T >

N =2 joa2|dMAINMNOI—A|~

UNSW COMP9312_23T2

Analysis

How did we do with BFS and DFS?

« Use a queue (or other container) to temporarily store those
vertices with in-degree zero

« Each time the in-degree of a vertex is decremented to
zero, push it onto the queue

128

r X« —ZT QMM OO O|m|lX>

N|[=a|a|ajlola|dAM] O |-~

UNSW COMP9312_23T2

Analysis

What are the run times associated with the queue?
« Initially, we must scan through each of the vertices: O(|/])

« For each vertex, we will have to push onto and pop off the
queue once, also O(|V])

A— B

c- < I
/ \F%
- \K>L

129

rXl«l— T QMM OO O|m|X>

N|(=a|aajlola|dAM] O~

UNSW COMP9312_23T2

Analysis

Finally, each value in the in-degree table is associated with an edge

* Here, |[E|=16

Each of the in-degrees must be decremented to zero
The run time of these operations is O(|E|)

If we are using an adjacency matrix: O(|V]?)

If we are using an adjacency list: O(|E))

130

16

A 1
B [+ 1
C +0
D |+ 2
E |+ 4
F |+ 2
G |+ 1
H |+ O
| |+ 1
J |+ 1
K|+ 1
L | +2

UNSW COMP9312_23T2

Analysis

Therefore, the run time of a topological sort is:
O(|V] + |E|) if we use an adjacency list

O(|VP?) if we use an adjacency matrix
and the additional memory requirements is O(|/])

A— B

c- pZ .
/ \F—>G//r
-

131

rIXl«l—|IT MM OO0 T >

N|(=|a|a|jlo|lma|NdaNM]oO|— |~

UNSW COMP9312_23T2

Analysis

What happens if at some step, all remaining vertices
have an in-degree greater than zero?

« There must be at least one cycle within that sub-set of vertices

Consequence: we now have an o(|V] + |E|) algorithm for
determining if a graph has a cycle

A—'B

c— pZ- ~
/ \F/
/ NN

| — K— L

E

132

rlxXl«|l—| I OQ/MMm OO0 W >

N = aalo=2MANMNOI=A|~

UNSW COMP9312_23T2

Implementation

Thus, to implement a topological sort:
« Allocate memory for and initialize an array of in-degrees
* Create a queue and initialize it with all vertices that have in-degree zero

While the queue is not empty:

* Pop a vertex from the queue

« Decrement the in-degree of each neighbor

» Those neighbors whose in-degree was decremented to zero are pushed onto the queue

133 UNSW COMP9312_23T2

Example

With the previous example, we initialize:
« The array of in-degrees
 The queue

Queue:

The queue is empty 134

= A a2 O 2 TN DEIDNDIOI A

rIXl«l—|IT O MM OO0 T >

N

UNSW COMP9312_23T2

Example

Stepping through the table, push all source vertices into the queue

A 1

B 1

C 0

D 2

/A B\ T

C—-D : E Fl 2

/ \F% G| f

N H| o

H— [— J/ K— L | 1

J 1

Queue: K 1
1 L 2

135 UNSW COMP9312_23T2

Example

Stepping through the table, push all source vertices into the queue

m
rlxXl«— T MM OO 0| >
A A a0~ IO | A~ |~

Queue: | C | H

N

136 UNSW COMP9312_23T2

Example

Pop the front of the queue

Tl
rX« — I MM OO0 W >
S A A O, NN IO A=

Queue: | C | H

N

137 UNSW COMP9312_23T2

Example

Pop the front of the queue
« C has one neighbor: D

C
A— B 0
\
F=G
NN
H— | — J/ K—— L
Queue: H
t

138 UNSW COMP9312_23T2

Example

Pop the front of the queue
« C has one neighbor: D
« Decrement its in-degree

A— B
F=G
AN
v K>L

Queue: H

139

UNSW COMP9312_23T2

Example

Pop the front of the queue

Ml
r|X|l«|—|ZT|@|MmM OO | W >
A a2 (N[~ O[—~ |~

Queue: H

N

140 UNSW COMP9312_23T2

Example

Pop the front of the queue
* H has two neighbors: D and |

A— B D 1
c—(D >

<
Q}J/ K— L |

Queue:

141 UNSW COMP9312_23T2

Example

Pop the front of the queue
* H has two neighbors: D and |
« Decrement their in-degrees

A— B
c—(D >

<
Q}J/ K— L

Queue:

142

UNSW COMP9312_23T2

Example

Pop the front of the queue
* H has two neighbors: D and |

« Decrement their in-degrees
« Both are decremented to zero, so push them onto the queue

A— B
c—(D >

<
Q}J/ K— L

Queue:

143

UNSW COMP9312_23T2

Example

Pop the front of the queue
* H has two neighbors: D and |

« Decrement their in-degrees
« Both are decremented to zero, so push them onto the queue

A— B
c—(D >

<
Q}J/ K— L

Queue: D | |

144

UNSW COMP9312_23T2

Example

Pop the front of the queue

Tl
rIXl«l—|IT O MM OO0 T >
A lajlolola MM |lO|lO|~ |~

Queue: D | |

N

145 UNSW COMP9312_23T2

Example

Pop the front of the queue
* D has three neighbors: A, Eand F

A 1
D 0
E

F 2

Queue: |

146 UNSW COMP9312_23T2

Example

Pop the front of the queue
* D has three neighbors: A, Eand F
« Decrement their in-degrees Al O

Queue: |

147 UNSW COMP9312_23T2

Example

Pop the front of the queue
* D has three neighbors: A, Eand F

« Decrement their in-degrees Al 0
« Ais decremented to zero, so push it onto the queue

Queue: | | A

148 UNSW COMP9312_23T2

Example

Pop the front of the queue

A 0

B 1

C 0

. D| 0

PN >0

C—D s E Fl o1
/ ~ F—'G//' G| 1
. H| o

AT P T o

J 1

Queue: | | A K 1
1 L 2

149 UNSW COMP9312_23T2

Example

Pop the front of the queue
| has one neighbor: J

Queue: A

150 UNSW COMP9312_23T2

Example

Pop the front of the queue
| has one neighbor: J
« Decrement its in-degree

Queue: A

151

UNSW COMP9312_23T2

Example

Pop the front of the queue

| has one neighbor: J
« Decrement its in-degree

« Jis decremented to zero, so push it onto the queue

Queue:

152

UNSW COMP9312_23T2

Example

Pop the front of the queue

Tl
rIXl«l—|IT O MM OO0 T >
~|lololo|la|lalw|lo|lo|—~ 0O

Queue: AlJ

N

153 UNSW COMP9312_23T2

Example

Pop the front of the queue
* A has one neighbor: B

vy
-

C—D E
N
AT P
Queue: J
1

154 UNSW COMP9312_23T2

Example

Pop the front of the queue
* A has one neighbor: B
« Decrement its in-degree

C—D E
/ \F{/'
\
H—'I—>J/ K>L
Queue: J

vy

UNSW COMP9312_23T2

Example

Pop the front of the queue
* A has one neighbor: B

« Decrement its in-degree
« B is decremented to zero, so push it onto the queue

C— D
="
/ AN
H— | — J K> L
Queue: J | B

156

vy

UNSW COMP9312_23T2

Example

Pop the front of the queue

A 0

B 0

C 0

D 0

=B >

C—D s E Fl o1
/ ~ F—'G//' G| 1
. H| o

AT P T o
J 0

Queue: J B K 1
1 L 2

157 UNSW COMP9312_23T2

Example

Pop the front of the queue
* J has one neighbor: F

A— B
\
C— D/ s E F | 1
/ °
HZ | (|
J 0
Queue: B
|

158 UNSW COMP9312_23T2

Example

Pop the front of the queue
* J has one neighbor: F
« Decrement its in-degree

A— B
c— < \=E

/ °

H | K>L

Queue: B

159

UNSW COMP9312_23T2

Example

Pop the front of the queue
* J has one neighbor: F

« Decrement its in-degree
* F is decremented to zero, so push it onto the queue

A— B
\
—>D/ s E F| o
/ °
H~ |%L
J 0
Queue: B F
1

160 UNSW COMP9312_23T2

Example

Pop the front of the queue

A 0

B 0

C 0

D 0

/A B\ E| 3

C—-D s E F| 0
/ ~ F—'G//' G| f
. H| o

AT Vi T o
J 0

Queue: B | F K 1
1 L 2

161 UNSW COMP9312_23T2

Example

Pop the front of the queue
* B has one neighbor: E

B 0
PG T
C—-D :
N
PINE
H— [— J
Queue: F
1

162 UNSW COMP9312_23T2

Example

Pop the front of the queue
* B has one neighbor: E
« Decrement its in-degree

Queue: F

163 UNSW COMP9312_23T2

Example

Pop the front of the queue

Tl
rIXl«l—|IT O MM OO0 T >
~|lololo|la|lo/dvV/Oo|loo o

Queue: F

N

164 UNSW COMP9312_23T2

Example

Pop the front of the queue
* F has three neighbors: E, G and K

Queue: K 1

165 UNSW COMP9312_23T2

Example

Pop the front of the queue
* F has three neighbors: E, G and K
« Decrement their in-degrees

Queue:

UNSW COMP9312_23T2

Example

Pop the front of the queue
* F has three neighbors: E, G and K

« Decrement their in-degrees

G and K are decremented to zero,
so push them onto the queue

Queue: G| K K 0

167 UNSW COMP9312_23T2

Example

Pop the front of the queue

\‘?
O
N\ /N
L
/|
r‘l,-l
rIxX«|—|IZ®@MMOO|w| >
o|lo|lo|lo|o|lo|~ 0|0 |O|O

N

Queue: G| K

168 UNSW COMP9312_23T2

Example

Pop the front of the queue
* G has two neighbors: E and L

_A—B L
C—-D
/ \F . —
H— I—'J/
Queue: K
1 L 2

169 UNSW COMP9312_23T2

Example

Pop the front of the queue
* G has two neighbors: E and L
« Decrement their in-degrees

Queue:

1

UNSW COMP9312_23T2

Example

Pop the front of the queue
* G has two neighbors: E and L

« Decrement their in-degrees
« E is decremented to zero, so push it onto the queue

/A—>B
oS
H— | — J/ ~

Queue: KIlE

171

1

UNSW COMP9312_23T2

Example

Pop the front of the queue

A 0

B 0

C 0

D 0

/A B\ E| 0

C—-D s E F| 0
/ ~ F—'G//' G| O
. H| o

AT Vi T o
J 0

Queue: K| E K 0
1 L 1

172 UNSW COMP9312_23T2

Example

Pop the front of the queue
« K has one neighbors: L

- \
/ \F//'

N0
Queue: K 0

1 L 1

173 UNSW COMP9312_23T2

Example

Pop the front of the queue
« K has one neighbors: L
« Decrement its in-degree

™~
/
\®>®

Queue:

174

0

0

UNSW COMP9312_23T2

Example

Pop the front of the queue

« K has one neighbors: L
« Decrement its in-degree

» L is decremented to zero, so push it onto the queue

Queue:

A

_.B\;E
=

\
N/
l

175

0

0

UNSW COMP9312_23T2

Example

Pop the front of the queue

A 0

B 0

C 0

D 0

/A B\ E| 0

C—-D s E F| 0
/ ~ F—'G//' G| O
. H| o

AT Vi T o
J 0

Queue: E | L K 0
1 L 0

176 UNSW COMP9312_23T2

Example

Pop the front of the queue
* E has no neighbors—it is a sink

A— B
e \ E| o
}D\F%@
VAT N
Queue: L

177 UNSW COMP9312_23T2

Example

Pop the front of the queue

A 0

B 0

C 0

D 0

PN >0

C—-D s E F| o
/ ~ F—'G//' G| 0
. H| o

H— | — J/ K—— | 0
J 0

Queue: L K 0
1 L 0

178 UNSW COMP9312_23T2

Example

Pop the front of the queue
» L has no neighbors—it is also a sink

A

P

E

C—~D
/ F\{/'
H> 1= J K>®

1 L 0

179 UNSW COMP9312_23T2

\ /N

Queue:

Example

The queue is empty, so we are done

Tl
rIXl«l—|IT O MM OO0 T >
ololololololo|lolo|lo|lo

Queue:

o

180 UNSW COMP9312_23T2

Example

The enqueue order is the topological sorting

}D\F%//;E
T \K>L

181 UNSW COMP9312_23T2

Exercise

Can you compute the topological sort of the following graph?

~E

A\/D\ /

B/C

182 UNSW COMP9312_23T2

Exercise

Initialize the array of in-degrees and the queue

A 0
A —E B| 1
\ C 2
D D 1
/> el

C

B/

Queue:

t

The queue is empty

183 UNSW COMP9312_23T2

Exercise

Push A onto the queue

A 0
A —E B | 1
\ C 2
D D 1
s =
C
B/
Queue: | A

184 UNSW COMP9312_23T2

Exercise

Pop the front of the queue
— A has two neighbors: D and E

A 0
A E
D
/ E| 2
C
B/
Queue:

185 UNSW COMP9312_23T2

Exercise

Pop the front of the queue
— A has two neighbors: D and E

— Decrement their in-degree A 0
A E
D 0
E
/ C
B
Queue:
1

186 UNSW COMP9312_23T2

Exercise

Pop the front of the queue
— A has two neighbors: D and E

— Decrement their in-degree A 0
A ~E
D 0
E
/ C
B
Queue: D
D is decremented to zero, so push it onto the queue 1

187 UNSW COMP9312_23T2

Exercise

Pop the front of the queue
— D has two neighbors: B and C

(@

2
(D) D| o

Queue:

188 UNSW COMP9312_23T2

Exercise

Pop the front of the queue
— D has two neighbors: B and C
— Decrement their in-degree

A

(@

1
(D) D| o
C
(B
Queue:

189 UNSW COMP9312_23T2

Exercise

Pop the front of the queue
— D has two neighbors: B and C
— Decrement their in-degree

N ' o
.

C

@ B

Queue:

A

(@

B is decremented to zero, so push it onto the queue

190 UNSW COMP9312_23T2

Exercise

Pop the front of the queue
— B has one neighbor: C

.

Queue:

191 UNSW COMP9312_23T2

Exercise

Pop the front of the queue
— B has one neighbor: C
— Decrement its in-degree

.

Queue:

192 UNSW COMP9312_23T2

Exercise

Pop the front of the queue
— B has one neighbor: C
— Decrement its in-degree

.

Queue: C

C is decremented to zero, so push it onto the queue

193 UNSW COMP9312_23T2

Exercise

Pop the front of the queue
— C has one neighbor: E

\ C 0
D

Y, ;.

Queue:

194 UNSW COMP9312_23T2

Exercise

Pop the front of the queue
— C has one neighbor: E
— Decrement its in-degree

\ C 0
D

Y, Ny

Queue:

A

195 UNSW COMP9312_23T2

Exercise

Pop the front of the queue
— C has one neighbor: E
— Decrement its in-degree

\ C 0
D

Y, Ny

B
E

Queue:

A

E is decremented to zero, so push it onto the queue

196 UNSW COMP9312_23T2

Exercise

Pop the front of the queue
— E has no neighbors

A\D
[

Queue:

197 UNSW COMP9312_23T2

Exercise

The queue is empty, so we are done

A 0
A -~ E B| 0
\ C 0
D D 0
/> e

C

B/

Queue:

198 UNSW COMP9312_23T2

Learning outcomes

« Understand the BFS and DFS algorithms

« Understand the algorithms for computing connected

components (using BFS and Disjoint-set)

* Know the concept of topological sort and how to compute it

199 UNSW COMP9312_23T2

