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Recap: Graph Neural Networks
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How to write this as Message + Aggregation?
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Recap: Graph Neural Networks

0 o hy Y Ry —
h = z W ) u ggregation
v |N(17) | ""3-1--‘?.:_1.::'? (1) Message

@

UEN(v) o ®
Message:
EaCh NEIgh bor: mg) — w(l) hg_l) (In the GCN paper they use a slightly
different normalization)
Aggregation:

Sum over messages from neighbors, then apply activation

hl(,l) =0 (Sum ({mg),u S N(v)}))




Recap: Graph Neural Networks

h® = o (W(I) . CONCAT (hg_l),AGG ({hg_l),v"u € N(v)})))

Message is computed within the AGG(-)

Stage 1: Aggregate from node neighbors

hﬁzv) « AGG ({hg_l), Vu € N(v)})

Stage 2: Further aggregate over the node itself

h’ < o (W® - CONCAT(hS ™, h,))




Recap: Graph Neural Networks

Mean: Take a weighted average of neighbors

AGG =
Aggregation

h{,

IN(v)|| Message computation

Pool: Transform neighbor vectors and apply
symmetric vector function Mean(-) or Max(-)

AGG =|Mean ({

MLP

(b ™), vu € N(v)})

Aggregation Message computation
LSTM: Apply LSTM to reshuffled of neighbors

AGG =[ESTM([h!' ™, vu € m(N())])

Aggregation




Recap: Graph Neural Networks

l [—1
hi(i) — J(ZuEN(v)aqu(l)h; ))

1

IN(v)|
of node u’s message to node v

Ay = is the weighting factor (importance)

= a,,, is defined

= All neighbors u € N(v) are equally important
to node v




Recap: Graph Neural Networks

[ [—1
hT(J) — O_(ZuEN(vJ_avuw(Z)hg ))

Not all node’s neighbors are equally important

Attention is inspired by cognitive attention.

The attention a,,,, focuses on the important parts of
the input data and fades out the rest.

Idea: the NN should devote more computing power on that
small but important part of the data.

Which part of the data is more important depends on the
context and is learned through training.




Application of Graph Neural Networks

Node Classification FAKE NEWS FAKE NEWS bk ki

S FA!_E NEWS FAKE NEWS

NEWSIFAKE NEWS FAKE NEWS 5> ..

L Some labels of nodes are given

dPredict the labels of Unlabelled nodes.
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Application of Graph Neural Networks
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dWith existing edges (links)  QLink prediction can be used to explore

between nodes, predictthe  potential interaction between proteins.
existence of possible links.




Applications of GNNs

= Structured Entity Analysis (Chemical, Biomedical)
= Subgraph Isomorphism (Database)

* Fraud Detection (e-Commerce)
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Structured Entity Analysis




Structured Entity Analysis

Many real-life structured :
entities can be modelled as 5 __\-:/\ :
graphs, such as chemical & s L/

molecules and proteins. o \o
Lo P!
Graph neural networks can .
| N
be used to analyse these e 7T < A
structured entities. SN v & ey
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Structured Entity Analysis

C:12 :
Toxicity of chemical }\-n\cj‘lc : /\\A
molecules. O“O:Cii j\\”\/\ o &
Ni8—c. C:0 /\\C/
o C:13 ;\ ¢ \
Property prediction for - :
molecules.  parn o]
compound “\”_(}\II/'J\ - ::.;-.:IJIH::I toxicity
<
Interactions between e | \ < A
molecules. O ey Y




Interaction between molecules

Prediction of reaction
between two molecules

Prediction of the side effect
of drug pairs.
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Immediate solutions

The immediate way to investigate the interactions between two
entities (molecules or drugs) is to conduct experiments in
laboratories and clinics.

However, it is time consuming and labour intensive. It is
impractical to test all entity pairs.

Therefore, computational approaches are proposed to predict
structured entity interaction effectively and efficiently.
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Nailve computational solution

Model the molecules as
graphs

Directly apply the graph
neural networks for the
predictions.

However, such solution
ignores the interaction
relation between molecules.
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Other computational methods

Simplified molecular-input line-entry system (SMILES) —\ )
HNL/N \ 0

Using strings to represent molecules.

Natural Language Processing (NLP) models are B <3N 5
applied to capture the molecule information and 7~ M
produce the representations for molecules NN, ©
Downstream applications are based on the :
representations. . N

N O
However, these models cannot capture the structural 1~/_\~ - :\4_‘
information of the molecules. ' ¥ =

N1CCN(CC1)C(C(F)=C2)=CC(=C2C4=0)N(C3CC3)C=C4C(=0)O
= W



Goals

Capture the structural information of the molecule graphs.

Preserve the interaction relationship between the structured entities
(molecules).

|dentify the important substructures within the molecules that are
key to the prediction of interactions.
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Graph of Graphs

Local graph: the molecule graph

representing the chemical structure. - % N N
(nodes: atoms, edges: chemical :
bonds between the atoms.) . ' '

Global graph: the graph of
Interactions between the chemicals.

(nodes: chemical molecules, edges: S
interaction relations between the
molecules.)




Target of the model

With the input graph, the target of the

model is to conduct the link prediction o L, o 5

on the global graph.
%OH : ~oH : )CJ)\OH :

The graph neural network applied on s @D vt D seacza D

the local graph should be able to
capture the important substructure
(functional groups) in the molecules.
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Graph of Graphs Neural Network

El Ap p I y g ra p h neura | Molecule Graph Neural Network Interaction Graph Neural Network
A
networks on the graph o *S — ,
of graphs_ ubsiructure oo

AR o) OH 5 Interaction between
| P Y © molecule graphs

AN
L Utilize more information o o

Graph ~ _~ Attention-

W I t h I N th e g ra p h Convolution based Pooling

l ..........
S t ru Ct u re S - Graph ~ _~ Attention- Graph Attention

Convolution based Pooling  Concatenation Network AW D """"" g
ot
l ) Product
. :Jy : Xbenzoic_acid P interaction
dCan be used for entity | X dden
. . . . Graph ~ _~ Attention-
| n te ra Ctl O n p red | Ctl O n Convolution based Pooling
Input atoms Molecule graph Molecule graph Interaction

a n d m O I e C u I e feature hidden feature representation probabilities
classification.

Our recent work
- “GoGNN: Graph of Graphs Neural Network for Predicting Structured Entity Interactions” IJCAI 2020




Graph of Graphs Neural Network

. . Molecule Graph Neural Network Interact
Multi-Resolution Graph Neural Network , A . —
O, CH Substructure o~

Selection
i/ = Os. _OH
J Y

Graph ~ _~ Attention-
Convolution based Pooling

!

= Use the concatenation of the output after
different layer of GNNs to keep multi-scale
(multi-hop) substructure information.

Graph =~ Attention-
Convolution based Pooling  Concatenati
= Each layer of graph neural network captures omh | At Khidden
one-hop neighbour relationship. it o ol grop
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Graph of Graphs Neural Network

Local graph neural network:

The neural network used to learn representations for chemical
molecules. We use /-layer graph convolutional network (GCN) as

the local graph neural network:

M@41) = GCNz(A M;)
GCNI(A Ml) = O'(D ZAD ZMlWl)
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Graph of Graphs Neural Network

Graph pooling

Graph pooling is a computational strategy to reduce the number
of graph nodes; in this way, one has a unified graph-level rather
than node-level representation for graph-structured data while
the size and topology of an individual graph are changing.

Original Pooled network Pooled network Pooled network Graph
network at level 1 at level 2 at level 3 classification

%‘f‘l&\l O
X)X 2
i @, K& O
7
"" @




Graph of Graphs Neural Network

Graph pooling examples
(1) Global mean pooling

yo = Mean({h,€ RY,Vv € G})
(2) Global max pooling

yo = Max({he R4, Vv € G})
(3) Global sum pooling

yo = Sum({h,€ RY, Vv € G})

Issue: Global pooling over a (large) graph will lose information

YYYYYY



Graph of Graphs Neural Network

Graph attentlon poollng Molecule Graph Neural Network
O OhR Substructure
] ] Selection
The attention-based pooling method to select the @ OYOH ©
most representative substructure to represent the 7
molecule graph: Gt .
~ Convolution based Pooling
I
’—1 ’_:_i Graph' |, Attentioq—
S, =0 D 2AD 2 Ml VVa lt . Convilutlon based Pooling ¢
idx = top(s, [yn]), ;
Smask = Sidx Mser = M © Spask Gr;ph B oo
Convolution based Pooling
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Graph of Graphs Neural Network

Graph attention pooling

1.1
S = G(D 2AD ZMlWaftt)
idx = top(s, [yn]),
Smask = Sidxr Mset = M O Spask

M., is the representation matrix for the selected atoms in
the molecule graph

After selection, the combination of mean pooling and sum
pooling is used to produce the representation for the
molecule graph, which is also the input for interaction
graph neural network.

attention pooling

=0l

Smask — Sid

IS the representatic
nolecule graph

r selection, the comr
Ing is used to prodt
xcule graph, which |
h neural network.
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Graph of Graphs Neural Network

G ra p h atte n tl O n n etWO rk Interaction Graph Neural Network

AL
I's N

P OH
OH\O OH/HO/\/

= With the learned molecule graph /@ " eloonlc gapt
representations, the embedding is updated o~ N
based on the interaction network. The multi-

head attention mechanism is utilized:

Graph Attention
Network Dot
Product

K
+1 _ K l..1
xGi _ K=1 o Z al] WK e j Xbenzoic_acid P ieraction
JENg; Xhidden
exp (LeakeyRelu (a [Wx(;.] || [WxG ]))
o = l J Molecule graph Molecule graph Interaction
Ly hidden feature tati probabilities
Yneng XD (LeakeyRelu (a [ch;i] || [WxGn])) reprERETEOn
l
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Graph of Graphs Neural Network
Training objectives

The predicted interaction probability:
Dij = G(xgi -ij)
Cross-entropy loss function:

Leeg = 2 — log (pij) - Em~leOg(1 - pim)

(Gi'Gj)EGCCI
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Graph of Graphs Neural Network

Datasets:

CCl tasks: The CCI dataset assigns a score from 0 to 999 to describe the
iInteraction probability where a higher score indicates higher interaction
probability. According to threshold score, we get two datasets with
chemical interaction probability score over 900 and 950: CCI900 and
CCI950.

DDI tasks. For the drug-drug interaction prediction problem, DDI dataset
and the side effect dataset SE are used. A vector representation (attribute)
is assigned to each side effect type produced by pre-trained BERT model

YYYYYY



Graph of Graphs Neural Network

Experiment results:

CCI1900 CCI950

AUC AP AUC AP
DeepCCI 0.925 0918 0.957 0.957
DeepDDI 0.891 0.886 0.916 0.915
MR-GNN 0.927 0.921 0.934 0.924
MLRDA 0.922 0.907 0.959 0.948
SEAL 0.804 0.886 0.941 0.937
GoGNN 0.937 0932 0.963 0.962
GoGNN-M 0.914 0.909 0.938 0.931
GoGNN-1 0.921 0.898 0.929 0.912
GoGNN-noPool | 0.931 0.930 0.958 0.954
GoGNN-noAttn | 0.909 0.905 0.956 0.948

DDI SE
AUC AP AUC AP

DeepCClI 0.862 0.856 0.819  0.806
DeepDDI 0.915 0912 0.827  0.809
MR-GNN 0.932 0922 0.769* 0.752*
MLRDA 0.931 0.926 0.847* 0.825*
Decagon - - 0.872  0.832

SEAL 0.925 0.921 N/A N/A
GoGNN 0.943 0933 0930 0.927
GoGNN-M 0.905 0902 0.862  0.817
GoGNN-I 0.922 0917 0.860  0.834
GoGNN-noPool | 0.900 0.891 0912  0.909
GoGNN-noAttn | 0.925 0921 0.897  0.883

Table 1: Result of chemical-chemical interaction prediction task.

" indicates that the result is the output of the baselines

after two weeks’ training.

- DDI dataset has no protein data which is required by

Decagon

Table 2: Result of drug-drug interaction prediction task.

SYDNEY



Graph of Graphs Neural Network

Case study:

Red: the substructures that are responsible of the interactions.

Clofarabine Aprepitant Mesalazine Gemcitabine Diclofenac Gentamicin Benzoic acid Tryptophan
‘ ..\ Q H i . . 0
SWe SIS, O4C D) "JVTQ
.--'O‘« A W _ e a . . Y
- Q i - iH, / H Y h
p 0.765 p= DEI'Esi p=0.996 p = 0.999 p = 0.999 p=10. = 0. p=0.
K, P
Fenoldopam Felbamate Canagliflozin Fingolimod Hydroflumethiazide Aceclofenac Prednisolone Levorphanol

Our recent work
- “Denoising Variational Graph of Graphs Auto-Encoder for Predicting Structured Entity Interactions” -- TKDE 2023




Subgraph Isomorphism




Subgraph Counting

Subgraph Isomorphism

* Querygraphq = (V,E, f;)
« Datagraph ¢ = (V',E', f})

« Subgraph Isomorphism: injective function f;;,:V = V':

* Yu eV, fi(u) = fi(fiso(w))
* Ve(u,u') € E,e(fiso(W), fiso(u')) € E

« Determining the existence of subgraph isomorphism is 9 G
NP-complete.




Graph isomorphism ( a more complicated example)

An isomorphism
between G and H

Graph G Graph H

https://en.wikipedia.org/wiki/Graph_isomorphism

VVVVVV



Subgraph Counting

Subgraph Counting: Given a query graph g and a data graph G, the problem is to count the number of
subgraphs in the data graph that match the query graph by subgraph isomorphism.

Subgraph isomorphisms

1. (uq,uy,uz,uy) = (U1, 04, Vs, V1)




Subgraph Counting

Subgraph Counting: Given a query graph g and a data graph G, the problem is to count the number of
subgraphs in the data graph that match the query graph by subgraph isomorphism.

Subgraph isomorphisms

1. (ug,up uz, uy) = (U1, vy, Vs, V1g)
Z- (u1'u2'u3'u4) — (171,174, vS;vll)




Subgraph Counting

Subgraph Counting: Given a query graph g and a data graph G, the problem is to count the number of
subgraphs in the data graph that match the query graph by subgraph isomorphism.

Subgraph isomorphisms

1. (ug,up,uz, ug) = (v4, V4, Vs, v10)
2. (u1'u2'u3'u4) - (171,174, vS;vll)
3. (ul; Uz, Uz, u4) - (171, Uy, Ve, vll)




Why Subgraph Counting?
Applications

Analysis on Social Networks:

* Find co-authorships, community detection.

Analysis on Biological Networks:

« On brain, regulation, protein and molecule graphs.
« Summarize the structural patterns for the biological graphs.
Query Optimization for Subgraph Matching Queries: Schod T A

« Cardinality estimation for multi-way join.




Existing Subgraph Counting Methods

Algorithmic Methods: Learning-based Methods:

Enumeration-based methods: Neural Subgraph Isomorphism Counting

« Computational complexity.
Pattern b Repreeentanon
Sampling-based methods: e Interaction |—s»| FC |— Count
. . U v Ruprcscnlalmn

Sampling failure.

Summary-based methods:

* Independent assumption.




Existing Subgraph Counting Methods

Neural Subgraph Isomorphism Counting:

= The query graph and data graph are input into the ] —
graph neural networks for representation learning. |

q — £(g)

= The learned representations are input into the

RNN-based network named DIAMNet to predict the .;’3‘.. -y
subgraph counts. SS9 I

G

NSIC

YYYYYY



Existing Subgraph Counting Methods

Neural Subgraph Isomorphism Counting:
The data graph is usually large-scale. ]

The model will face the efficiency and scalability
Issue.

Since the data graph contains more information, it %_’ o —1
Is hard to distinguish the counting results of

different query graphs when the data graph is .
large. The representation of data graph will
dominate the computation in this case.

g — £(g)

YYYYYY



Existing Subgraph Counting Methods

A Learned Sketch for Subgraph Counting: % \
— — L > (g)
= The initial features of query nodes are computed S° A
based on the labels and structure of data graph by . OF  meworcwmn
the graph embedding methods like DeepWalk. e 31
.’? 0 |
= The query graph is decomposed into small B, = e
substructures and fed into the graph neural network g e,

with active learner to predict the subgraph counts. LSS




Existing Subgraph Counting Methods

A Learned Sketch for Subgraph Counting: % \
— — L = &(9)
= Cannot fully utilize the data graph information. The % L
topological information of data graph is somehow . OF  meworcwmn
ignored. @ 4
".4 (T
o A O® — IO
= Consequently, the model has limited robustness, R sbel e
i.e., the result can be easily affected by minor g e
modification on the query graph. LSS

YYYYYY



Goal

Utilize both query and data graph information.

Avoid efficiency and scalability issue.

Improve the subgraph counting accuracy.

YYYYYY



Neural Subgraph Counting method: NeurSC

Substructure Wasserstein
Extraction Estimator

Query graph g, | | Q | Gsub | ( \  Approximate
Datagraph G || ' Y ARY | SlegraPh counts
ﬁ q ¢(q)

Extract
substructures

Our recent work
- “Neural Subgraph Counting with Wasserstein Estimator” -- SIGMOD 2022




NeurSC

Substructure Extraction

« Complete Candidate Vertex Set (CS):

* (CS(u) for query vertex u € V is a set of data vertices v € V'
* If (u,v) exists in a match from q to G, then v € CS(u)

» First, we determine the complete candidate vertex set for all
query vertices using local pruning and global refinement.
« Based on neighboring and label information

« Candidate set of query g: CS(q) =Uy ey CS(u)

» Induced subgraph of G with vertices CS(q) is used as the
candidate substructures, denoted as G,




NeurSC

Feature Initialization

%y = fio([deg) |l (W MP, ey fo (degu) 1 f> (i)

S

Degree information Label information Neighbor information

|| denotes the concatenation.

fp denotes the binary encoding that converts the decimal digits into binary numbers.

MP denotes the mean pooling.

N® (v) denotes the i-hop neighbors of v.




NeurSC

Wasserstein Estimator Estmated
Subgraph Counts cs‘“bA(Q)
* Intra-Graph Neural Network MLP
« For both query graph and substructure. hy [T Linc'aterfat{oi L
 Capture structural and attribute information. —Readout———— S — Readout—
k k—1 k O
* Inter-Graph Neural Network 7 | WaSterstein

-Discriminator, A Y

« Construct a bipartite graph for inter-relationship.
« Capture the mapping relationship between query
vertices and corresponding candidate vertices

k k k-1 k k
o hgl) — O'((l( )e(k)h( ) ZvENG ) a( )B(k)h( ))

G G
q Intra-Graph sub q Inter-Graph sub
Neural Network Neural Network




NeurSC

Wasserstein Estimator Estimated
Subgraph Counts Csub (q)
* Readout A
« Sum Pooling hy (T T T
« Concatenation of intra- and inter-graph representations.  Fbadoli——— e Readout—
« Multi-layer perceptron. — L 2 i
‘Discriminator: "

 Wasserstein Discriminator
« Minimize Wasserstein distance between g and G
« Further utilize the vertex correspondence
information between q and G

* Ly(q,Geup) = ZuEV’(q) fw(hu) - ZUEV’(Gsub)fw(hv)

’ Expresswg Power . . 9 Intra-Graph GSUb 9 Inter-Graph
« WEstis as powerful as 1-Weisfeiler-Lehman test. Neural Network Neural Network




Learning objective and training procedure

NeurSC

qg-error loss

. _ c(q) <¢(q)
LC(q) — max (é(q)+e ! c(q))

« Optimize the model by reducing the prediction error.
Wasserstein loss

* Ly(q Gsyp) = ZuEV’(q) fw(hu) - ZvEV’(Gsub) fw(hv)
 Minimize the Wasserstein distance.

Overall loss

© L(@) = (1= BLe(@) = 5= Tgey, Lw(9.9)

Algorithm 3: Training Procedure of WEst

[y

]

)

Input: training query graph set Q;, data graph G, estimation

network fg . discriminator f,,,, learning rates ay, a,,., batch

S1z€ Npgpep. number of training iterations iter,,.

Initialize optimizers optyg, opt,, with learning rates ay, «,,.

Separate (J; into batches {Qy, = {qm } } with ng,,.p query graphs.
for Qp € Q; do

\ for iter,, do

for q“}' € Qp do

~anerate GV f (i)

(JLr_ltrdtL me for g _
XEE,‘} « initial features of vertices in query graph g'?

forj=1,..,|6"% | do

sub

X'Eﬂ «— initial features of vertices in G(_ﬂ
© 0) G) ol +0)
(i I i) - i E) [ J
H‘F ? H.l;ub' Cj [‘/q{i} ) fU (q 7, (J_gub' X"—f ' X:;ub)

\ Sample V'(qm] and V’{GEﬁJ}
Update w by opt,,, minimizing — £, in Eq. 9
)]
Hub)
&g = T (")
Compute L.(g'") using Eq. 10

Compute £L,(g'", G

Update 8 by optp with Zq“}EQ; .{,'[q{”} defined in Eq. 11

T SYDNEY



Experiment

Experimental Setup

« Dataset
» [ data graphs + 5 query sets.

« Compared methods
* 5 non-learning methods.

2 learning-based methods with 2 variants.

2 variants of NeurSC for ablation study.

 Parameter settings

Initial dimension: 64

Hidden and output dimension 128
Intra- and Inter-GNN have 2 layers.
Prediction network is a 4-layer MLP.

* Implementation

Substructure extraction: C++
WEst: Python + Pytorch Geometric

Table 2: Statistics of Data Graphs

Dataset V| |E| |L| d
Yeast 3,112 12,519 71 8.0
Human 4.674 86,282 44 36.9
HPRD 9,460 34,998 307 74
Wordnet 76,853 120,399 5 3.1
DBLP 317,080 1,049,866 15 6.6
EU2005 862,664 16,138,468 40 374
Youtube 1,134,890 2,987,624 25 5.3

Table 3: Details of Query Graphs

Dataset  # Queries Query Sizes Counts Range
Yeast 1,632 {4, 8, 16, 24, 32} [10°, 101 ]
Human 339 {4, 8, 16} [10°, 1017]
HPRD 1,000 {4, 8, 16} [10°, 10%]
Wordnet 600 {4, 8} [10, 107]
DBLP 600 {4, 8 [103, 103]
EU2005 372 {4, 8} [10% 107
Youtube 811 {4, 8, 16} [10Y, 1011]




Ll[Idl:t’f.‘st,(-q-EI‘I‘OI‘-}OVEFL‘.‘it.

Experiment Results

Accuracy Evaluation

mm NeurSC NeurSC-D NeurSC-1 LSS mm NSIC-T  pmm NSIC-C
mm W e SumRDF mm CS e JSUB mmm CSet

underest.<——q—error——)overest.

:Zl_m}“m“ "HH

Number of Query Vertices
(a) Yeast

16 24 32

i 8

underest.<--g-error-->overest,

'2 it H” i H

16 8 i6
Number of Query Vertices Number of Query Vertices
(b) Human (c¢) HPRD

underest.c-—q—crrnr——>overest.

underest.<--q-error-->overest,

Evaluation metric

. error- max(max(l,c) max(l,é))
q ) max(1,6) " max(1,c)

i0? 10®
% 10°]
107 % 10t
1]
Peettt3f | Dl N
7 107
10 ;104, I I
E 108 i
i0? I T 5 108 T :
Number of Query Vertices Number of Query Vertices
(d) DBLP (e) Wordnet
10® o 10f
10° g 108
10* 1 § 10
10”1 é 104
| odb WQE s ] 4]
10?1 f 1024
10* 1 g 10t
10° i —cg' 1054
=
of 4 8 ! 4 8 16
Number of Query Vertices Number of Query Vertices

(f) EU2005 (g) Youtube




Subgraph Matching

The objective of the subgraph matching is searching for all subgraph

isomorphisms from query graph q to data graph G

Definition II.1 (Subgraph Isomorphism). Given a query grap!
g = (V,F) and a data graph G = (V',E’), a subgrapl

1
1

isomorphism is an injective function f;s, from V to V' suc

that (1) Vo € V: .}(‘I(;U) — .fﬂ(.f’iﬁo(ﬂ)); and (2) V(ﬂ(’z..f.,fz_:) -

E? (i(J.'ll.H()(1-1')3._,‘?:53‘()(1-'!)) < Ef




Subgraph Isomorphism

(a) Query Graph ¢ (b) Data Graph GG




Subgraph Isomorphism

Subgraph isomorphisms

1. (ug,up,uz, ug) = (v4, V4, Vs, v10)
2. (u1'u2'u3'u4) - (171,174, vS;vll)
3. (ul; Uz, Uz, u4) - (171, Uy, Ve, vll)




Existing Subgraph Matching Methods
There are two major categories of subgraph matching methods:
» Backtracking-based methods

= Join-based methods

In this work, we focus on the backtracking-based methods.

YYYYYY



Existing Subgraph Matching Methods

The backtracking-based methods can be partitioned in three
main phases:

1. The complete candidate vertex set generation.
2. Matching order generation.

3. Matching enumeration.

YYYYYY



Backtracking-based Methods

Complete candidate vertex set generation is to filter out the
unpromising vertices, and hence reduce the search space before

the enumeration process begins.

Definition II.2 (Complete Candidate Vertex Set C). Given ¢
and (G, a complete candidate vertex set C'(u) of u € V(q) is
a set of data vertices such that for each v € V(G), if (u,v)
exists in a match from ¢ to GG, then v € C'(u).

YYYYYY



Backtracking-based Methods

Matching order generation phase generates the matching order ¢
to guide the enumeration of matched subgraphs.

Definition IL.3 (Matching Order). A matching order ¢ 1s a
permutation (i.e., sequence) of query graph’s vertex set V' (q).




Backtracking-based Methods

The enumeration procedure finds all matches of the query
subgraph q in the data graph G with given matching order .

Definition IL.5 (Enumeration Procedure). An enumeration
procedure 1s performed recursively to find subgraph matches
fiso With given matching order ¢ and candidate vertex set (.

YYYYYY



Subgraph Matching

Subgraph matching has wide applications such as query in graph
database and biological graph analytics.

However, it has been proven that the subgraph matching is NP-
complete. We cannot optimize the worst-case time cost.

In this work, we aim to reduce the enumeration time on the
average case by proposing a novel query vertex ordering
method.




Background

Motivation

Framework

Feature Representations

Query Vertex Ordering as Markov Decision Process
Policy Training

Experiments

YYYYYY



Limitations of Existing Order Generation
Methods

The existing subgraph matching methods usually generate the

matching order based on the heuristic values, here are some
examples:

* [nfrequent edge first ordering
» [nfrequent label first ordering
= Path-based ordering.
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Limitations of Existing Order Generation
Methods

Two major limitations:
= Cannot fully use the graph information.

» Greedy heuristics can lead to local optimum.
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If ordering based on degree (RI)

(a) Query Graph ¢ (b) Data Graph G
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If ordering based on label frequency
LF: 1/13 LF: Label frequency

(a) Query Graph ¢ (b) Data Graph G
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Greedy heuristics can lead to local optimum

The heuristic-based greedy methods can reduce the most
redundant intermediate results.

However, these methods cannot consider the long-term query
time cost.

The exact optimal order can only be found after all possible order
permutations are evaluated.
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Our solutions

Motivated by the aforementioned limitations, we proposed the
following approaches:

= Capture the graph information with graph neural network.

= Try to approach the global optimal with reinforcement learning.
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Framework

Action Space Update
Query Graph State Update
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Our recent work
- “Reinforcement learning based query vertex ordering model for subgraph matching” -- ICDE 2022
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Feature Initialization

We use the important statistical heuristics of query vertices to
initialize the input query representations.

Based on the input features, our model can fully exploit the
information within the features while preserving the relations
between the query and data graphs.
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Feature Initialization

= Degree of node:

h[:ﬁ) (1) — deg??ee(?-i)/G:I.’.i'.r.r_'ili}?”'t’i{i?

(§)

= [abel of node:
h,ff)(f-)) = label(u)

= Query node ID:
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Feature Initialization

= Frequency of data vertices with greater degree than the query

node
h{9(4) = [{v € Gld(u) < d(v)} /(V(G)] X aq);

= Frequency of data vertex with same label as query vertex:

hiY (5) = [{v € G|L(u) = L(v)} /([V(G)] x a);
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Feature Initialization

Lastly, we put two indicator variables in the initial feature:

= Number of unordered vertices:

he,(6) = |V(q)| —t+1
* Trailing indicator that shows whether the node has been ordered:

h!(7) = 1(u € ¢y_1)
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Query Vertex Ordering as Markov Decision
Process

To exploit the reinforcement learning, we need to model our query
vertex ordering problem as a Markov decision process (MDP).

Specifically, we need to define:

= State space = Action probabillity

» Action space = Reward




State Space

In this work, the state space is defined as the all (partial) vertex
order sequence.

Specifically, we use ¢: (the order at time step t) to denote the
state at time step t.
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Action Space

With the order ¢: (state of the MDP), we define the action space
as N(oy) ={N(u)|Vu € o1, N(u) ¢ ¢} which is the neighbor
vertices set of the ordered vertices in ¢« .

Consequently, the action at each time step t is to select a node
from the action space (neighbor set N(¢,) ).
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Action Probability

With the state and corresponding action space.

The key problem is to compute the probabilities
for each action in the action space.

To this end, we design a Graph Neural Network
(GNN)-based policy network.
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Policy Network

Graph convolutional network:

—

H™) = o(D 2 AD > HOW®)
Action probability with the state at time step t:

¥ S;) = 7(-|S") = Softmax(masky cas (1) (Wa-o(W; hf_:;) 1)
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Reward Design

Three main rewards:
= Enumeration reward
= Step-wise validate reward

= Entropy reward
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Enumeration Reward

Definition I1.6 (Enumeration Number). An enumeration num-
ber #.,,um 1S the number of recursive calls of the enumeration
procedure to find all matches with given ¢, &, ¢ and C.

The reduced enumeration number:
A#f_i’."i-'u.-’rﬂ, — #f.ﬁ’nru'n'a, (O) o #E’;’F'.{-'H.-’HL ((.-bbu,ﬁ t’_i)

Enumeration reward:
?"f;w/u, Tl — ,_ffi TLLLETre ( A # ETLULTEL ) '




Other rewards

Step-wise validation: 7,a1.:

Entropy reward:

rhe = H (P'-‘Tﬂ (O*' N (1))

Ensure the model can perform
more actions.
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Reward Design

With the aforementioned rewards, our overall rewards at time
step t is as follows:

. I-’f . i e
-H.-‘ = Tenum T .-d'f;u,ﬂ *Tval.t + _.df.i, *Tht

The overall reward is as follows:

[V(q)|

I{qﬁ — Z ﬂaffgfﬂ

=1
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Policy Training

In this work, we use the proximal policy optimization (PPO) to
train our policy network with the following loss function:

1 —€,14€)r(0))

jﬁ”(@) - Z man( molas|5t) r¢(0), clip( molas|ot)

(at,st) mor (at|st) mor (at|st)

V(9)l
J0) =Y JM0)
=1
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Experiment Setup

Dataset Statistics

Citeseer 3,327 4,732 6 1.4

QuickSI Yeast 3,112 12,519 71 8.0

RI DBLP 317,080 1,049,866 15 6.6

VF2++ Youtube 1,134,890 2,987,624 25 5.3

VEQ Wordnet 76,853 120,399 5 3.1
Hybrid EU2005 862,664 16,138,468 40  37.4

RL-QVO




Evaluation Metrics

= Query processing time

= Enumeration time




Average Query Processing Time

3 RL-QVO VEQ A Hybrid Rl Qsl VF2++ == GQL
103

102 - - _ |
— Z2lIK= - . 72| x=
£ 101. % — — - — — 1/ B
v Z213m 0 /dalle Y
'E ; — = \ - N -
@ 10°: v al= N ZR|1nj- - g e NG
© a n - - A0 1 b H
S : Jva nodeE EEE Neike o e DN e
10 JbH N N Akl NWE D g N o0
N [/ ] n ] ] V] ] / u
G2l Ol eR NYEeR Ndd e Y e
_ — = AdbH N - H N .
10 2 % [ ] ™ B N ; | ? : N 1 | /| B
= N E | S | \ 4 L [N /) # ||

] citeseer yeést dblp wo.rf:jnet 'eu2'005? youfupe
Fig. 3: Average Query Processing Time Comparison




Query Processing Time Percentile

Comparison

200 4

time cost (s)

time cost (s)

P

)

I
=)
[=]

tirme cost (s

Citeseer

100 1

" J_...du-_'.ﬂ'——'g:-—"';'-?'_'

[ S S N N ™
S aa—— N
T

85.0 875 90.0 925 950 975 100.0

B82.5
Percentile (%)
DBLP

-9

Ly

82.5

200 4

85.0 87.5 ©90.0 92.5 950 975 100.0
Percentile (%)
Wordnet
o L e ]
Lox
ZID 2l5 3IU 3I5 4l0 4I5 SID

Percentile (%)

time cost (s)

time cost (s)

time cost (s

Yeast
400 -
200
04 = . . . . - 2 "
92 94 96 a8 100
Percentile (%)
Youtube
5004 I
400
300 4
200 1
1004 v
40 45 50 55 60 65 70
Percentile (%)
EU2005
500 4 B ]
400 -
300 1
200 -
100

35 40 45 50

Percentile (%)




Enumeration Time Comparison
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Fraud Detection




Attributed Bipartite Graph

An attributed bipartite graph is a type of graph which consists of two sets of vertices that are linked by
edges. The vertices have additional attributes, making this graph particularly useful for representing
information in the field of e-commerce.
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Group-based Frauds on Attributed Bipartite Graphs

Group-based fraud is becoming increasingly common:
Rating Score Rating Score

“‘Ride Item’s Coattails” attack (edge classification) TR s

Sockpuppet-based Targeted Attack on Reviewing Systems (pps) -1 (Uep2) O
. ] n (u,p3) 05  (ugp3) 1
(STARS attack) (vertex classification) a ‘ @ wups) 05  (ugpg) 1
Lisa Sam Bob Andy Kane Eric Kate /7 », K\ (uy,ps) 0.5 (u7,p1) 1
(1) (u2) (us) (t44) (us) (ug) (ur) '@ (uzp) 0  (upp3) 1
@ @ , @ D3 y (uz,p3) 1 (u7,p) 1
@ 5 ' Q (uz,ps) 1 (u7,p6) 05
(s) A 2 K @wp) O (ugp1)
, @ (uz,ps) 05  (ugp2) O
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SOTA method for “Ride Item’s Coattails” attack

RICD ((a, k1, k2)-biclique): fraud detection method for “Ride Item’s Coattails” attack. Can only utilize
structural information.

Tianchi competition winner’s algorithm: classification method. Can only use attribute information.

Risk (3
15k Group ( Stage 2 : Group Screening

‘ User Behavior ltem Behavior e'e
9. Check " # Verifieation o. o




SOTA method for STARS attack

RTV: fraud detection method for Sockpuppet-based Targeted Attack on Reviewing Systems (STARS).
Unable to make good use of label information.

Algorithm RTV

Input: Rating graph G = (U U P, R, sc), weights ay, az, b1, b2, Y1, Y2, V3, Y4, threshold e

Output: fair(u) Yu € U, good(p) Vp € P, rel(u, p) V(u,p) € R

for each u € U, fairy(u) < norm(u)

for each p € P, good,(p) < norm(p)

for each (u,p) € R, rely(u, p) < norm(u, p)

pp — ZHE‘LI{;TIO(H), g — 2pep |g;:Td0(P)

1

for each u € U, fair,(u) « value computed as specified in Section 4.1, with rel(u, p) = rel,_1(u, p)
for each p € P, good,(p) « value computed as specified in Section 4.1, with rel(u, p) = rel;_(u, p)
for each (u,p) € R, rel;(u, p) < value computed as specified in Section 4.1, with fair(u) = fair,(u)
A max ( 3y eqq lfair, () — fair, ()], Zpep |g00d, () — g00d,_; (p)], X e Irels(as,p) — rel,_y(u, p)])
if A>cort=1thent « t+1andgoto Line6

return fair,(u) Yu € U, good,(p) Vp € P, rel(u,p) V(u,p) € R

— —
TSV N R WN =




Existing methods

Classification Methods:

« Imbalanced labeled vertices, community information.
Cohesive Subgraph Mining Methods:

« Attribute and label information, suffer from NP-completeness.

Fraud Detection Methods:

« Global topological and attribute information, label information, manual parameter setting.




Group-based Fraud Detection method: GFDN
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Our recent work
- “Group-based Fraud Detection Network on e-Commerce Platforms” -- KDD 2023




Group-based Fraud Detection method: GFDN
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Group-based Fraud Detection method: GFDN
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Group-based Fraud Detection method: GFDN
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Structural Feature Initialization

(a, B)-core:

Given a bipartite graph G and integers a, 8 € Z* ,
(a, B)-core of G is denoted as G ' which consists of
two vertex sets U'c Uand V' c V.

The (a, f)-core G 'is a maximal bipartite subgraph
induced by U' U V' from G in which all the vertices in
U’ have degrees at least « and all the vertices in V'
have degrees at least .

Se7en The Godfather Leon Star Wars

Avengers The Matrix WALL-E =~ X-Man

Crime
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Structural Feature Initialization

GFDN will generate structural features for vertices
based on their existence in different («, §)-core.

Xs) = Xus) © TuWas)), Xvs) =Xvs) © (Iy Wi g))

Attributed Bipartite Graph/

-

TN e

Structural Features Element-wise Product All-ones Vector Weight Matrix

(a,B) — core




Fraudster Community Detection

Encoder ]
BDCN - Autoencoder: X, Xu OS850 P X e -
Autoencoder in Bipartite Deep Clustering Network GROGROZX 5
DN /0 :
(BDCN) can: [ gk b ;
1. preserving both structural and attribute information \ =
from the input features.
2. Generate high-quality community representation - N 4
Decoder 4

for customer vertices. ¢t — distribution

L
O oXA N
Sl
LSOLRSORSO

Vi O g
O AN

It can achieve self-supervised fraud community
detection using a loss function measures with
Student's t-distribution kernel.




Fraudster Community Detection

BDCN - GNN:

GNN in BDCN can aggregate on attribute bipartite
graph and preserve the attribute information and
structural information of the graph. The output of
encoding layer will be used.
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Training Objective

/ Group-Based \

Fraud Detection
"Ride Item’s Coattails" Attack: M)
In "Ride ltem’s Coattails" attack, not all edges related
to fraudsters necessarily have attack implications.
GFDN will perform multi-task training on this issue, N W
predicting both fraudsters and fraudulent attack. —> MLP > Yu

C

STARS Attack: “ \ %
STARS attack detection aims to detect fraudsters, ) A
in which case GFDN only needs to perform the >  MLP
vertex classification task. —
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Training Objective

The final loss function will be composed of the loss functions of the aforementioned modules, including
autoencoder, community prediction, fraudster prediction, and fraudulent prediction. The sum of the

weights of all parts of them is 1.

L =wgeLge +wecLe +wl‘£l + we Le

d / \ AN

Autoencoder Community Fraudster Fraudulent
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Experimental Setup

Dataset
* 4 real-life datasets.
Compared methods Table 1: Datasets for “Ride Item’s Coattails” Attack Detection
* 5 learning-based methods. Dataset | E] |U | V| % Fraudulent | % Legitimate
« 2 pattern-based methods. TB 3,085,653 | 996,090 | 381,611 0.62% 3.53%
» 4 fraud detection methods. TC 1,050,000 | 532,345 | 239,840 2.86% 11.43%
« A naive model and four ablated GFDNSs Table 2: Datasets for STARS Attack Detection
Parameter settings Dataset | E] U | |V| | % Fraudulent | % Legitimate
« The number of GNN layer: 4. Alpha | 24,186 | 3,286 | 3,754 3.10% 4.20%
« The number of community: 32. OTC 35,592 | 4,814 | 5,858 3.70% 2.80%

« Hidden dimension: 128.
» The selected GNN is GraphSAGE.

Implementation
« Structure information extraction: C++
» Other Parts of the Model :Python + Pytorch Geometric.




Effectiveness Evaluation Results for “Ride Item’s Coattails” Detection

| TB Data | TC Data

| F1 Acc  AUC  Pre  Recall | F1 Acc AUC  Pre  Recall
LPA 0.2737  0.4627 05517  0.1715 06785 | 0.2056 04284  0.5276  0.1219  0.6557
SBGNN 04789  0.8228  0.7947  0.4279 05438 | 03676 08074  0.7666  0.2900  0.5018
BiGI 0.5359  0.8540  0.8491  0.5097  0.5649 | 0.4039  0.8292  0.8044 03331 05129
STHG 0.6449  0.8709 0.8692  0.5470  0.7853 | 05947 0.8771 0.8985  0.4735  0.7992
Tianchi 0.6446  0.8752  0.9342  0.5606  0.7581 | 0.5364 0.8717 0.9107  0.4527  0.6583
RICD 0.6518  0.8405 0.9063  0.4834 1.0000 | 0.4784 0.8482 0.7474 03906  0.6171

(e, f)-core | 0.8081 0.9449  0.8757  0.8417  0.7770 | 0.6348 0.8907 0.83696  0.5093  0.8423
FRAUDAR | 0.2580  0.1481 0.4963  0.1483  0.9927 | 0.2020 0.1124  0.4981 0.1124  0.9961

CF1 0.2407  0.7698  0.5532  0.2371 0.2445 0.1620  0.7981  0.5253  0.1523  0.1731
CF2 0.4675 0.7603  0.7376  0.3497  0.7052 | 0.3588  0.6837  0.7277  0.2326  0.7844
Naive 0.8109 09473 0.9844  0.8736  0.7565 0.6397  0.9090 0.9516 0.7816 0.5414

GFDN-S 0.6867 09202 0.9653  0.8284  0.5864 | 0.6122  0.8783 0.9342 0.4780 0.8514
GFDN-F 0.9212 0.9754  0.9886  0.8821 0.9639 | 0.6401 0.8976  0.9287  0.5302  0.8076
GFDN-L 0.9398 09813 0.9964 0.9050  0.9775 0.7015 09192 0.9654 0.6014  0.8417
GFDN-C 0.9423 0.9821 0.9967 09086  0.9785 0.7048 09226 0.9646  0.6181  0.81938

GFDN 0.9522 0.9853 0.9974 0.9254 09806 | 0.7226 0.9242 0.9713 0.6154 0.83752




Comparison with Pattern-based Algorithms
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Query Time Evaluation of “Ride Item’s Coattails” Detection

TC

TB

LPA -
SBGNN
Bi1GI |

SHIG -
Tianchi
RICD -

(a, B)-core 1
FRAUDAR
CF1-
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Effectiveness Evaluation Results for STARS Detection

Alpha OTC
F1 Acc AUC Pre Recall F1 Acc AUC Pre Recall
FRAUDAR 0.3800 0.2626 0.5236 0.2346 1.0000 0.3780 0.2547 0.5183 0.2330 1.0000
RTV-SUP 0.8652 0.9452 0.8859 0.9747 0.7778 0.7010 0.8082 0.8736 0.5417 0.9931
(OC, ﬁ)—core 0.7857 0.8767 0.9204 0.6471 1.0000 0.7784 0.8711 0.9167 0.6372 1.0000
Naive 0.8089 0.9018 0.9789 0.7222 0.9192 0.7937 0.8978 0.9508 0.7310 0.8681
GFDN 0.8919 0.9452 0.9913 0.8049 1.0000 | 0.9231 0.9623 0.9746 0.8571 1.0000




Efficiency Evaluation Results for STARS Detection
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Thank you!
Q&A

hanchen.wang@uts.edu.au

https://hanchen-wang.com/
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