
Applications of Graph Neural
Networks

Hanchen Wang

31/07/2023

Recap: Graph Neural Networks

Recap: Graph Neural Networks

Recap: Graph Neural Networks

Recap: Graph Neural Networks

Recap: Graph Neural Networks

Recap: Graph Neural Networks
 (3) Graph Attention Networks

Not all node’s neighbors are equally important

▪ Attention is inspired by cognitive attention.

▪ The attention 𝜶𝒗𝒖 focuses on the important parts of
the input data and fades out the rest.

▪ Idea: the NN should devote more computing power on that
small but important part of the data.

▪ Which part of the data is more important depends on the
context and is learned through training.

Application of Graph Neural Networks
 Node Classification

❑Some labels of nodes are given

❑Predict the labels of Unlabelled nodes.

Application of Graph Neural Networks
 Link Prediction

❑With existing edges (links)

between nodes, predict the

existence of possible links.

❑Link prediction can be used to explore

potential interaction between proteins.

Applications of GNNs

▪ Structured Entity Analysis (Chemical, Biomedical)

▪ Subgraph Isomorphism (Database)

▪ Fraud Detection (e-Commerce)

Structured Entity Analysis

Structured Entity Analysis

▪ Many real-life structured

entities can be modelled as

graphs, such as chemical

molecules and proteins.

▪ Graph neural networks can

be used to analyse these

structured entities.

Structured Entity Analysis

▪ Toxicity of chemical

molecules.

▪ Property prediction for

molecules.

▪ Interactions between

molecules.

Interaction between molecules

▪ Prediction of reaction

between two molecules

▪ Prediction of the side effect

of drug pairs.

Immediate solutions

▪ The immediate way to investigate the interactions between two

entities (molecules or drugs) is to conduct experiments in

laboratories and clinics.

▪ However, it is time consuming and labour intensive. It is

impractical to test all entity pairs.

▪ Therefore, computational approaches are proposed to predict

structured entity interaction effectively and efficiently.

Naïve computational solution

▪ Model the molecules as
graphs

▪ Directly apply the graph
neural networks for the
predictions.

▪ However, such solution
ignores the interaction
relation between molecules.

Other computational methods

Simplified molecular-input line-entry system (SMILES)

▪ Using strings to represent molecules.

▪ Natural Language Processing (NLP) models are
applied to capture the molecule information and
produce the representations for molecules

▪ Downstream applications are based on the
representations.

▪ However, these models cannot capture the structural
information of the molecules.

Goals

▪ Capture the structural information of the molecule graphs.

▪ Preserve the interaction relationship between the structured entities

(molecules).

▪ Identify the important substructures within the molecules that are

key to the prediction of interactions.

Graph of Graphs

▪ Local graph: the molecule graph
representing the chemical structure.

▪ (nodes: atoms, edges: chemical
bonds between the atoms.)

▪ Global graph: the graph of
interactions between the chemicals.

▪ (nodes: chemical molecules, edges:
interaction relations between the
molecules.)

Target of the model

▪ With the input graph, the target of the
model is to conduct the link prediction
on the global graph.

▪ The graph neural network applied on
the local graph should be able to
capture the important substructure
(functional groups) in the molecules.

Graph of Graphs Neural Network

❑Apply graph neural
networks on the graph
of graphs.

❑Utilize more information
within the graph
structures.

❑Can be used for entity
interaction prediction
and molecule
classification.

Our recent work

- “GoGNN: Graph of Graphs Neural Network for Predicting Structured Entity Interactions” IJCAI 2020

Graph of Graphs Neural Network

Multi-Resolution Graph Neural Network

▪ Use the concatenation of the output after
different layer of GNNs to keep multi-scale
(multi-hop) substructure information.

▪ Each layer of graph neural network captures
one-hop neighbour relationship.

Graph of Graphs Neural Network

Local graph neural network:

The neural network used to learn representations for chemical
molecules. We use l-layer graph convolutional network (GCN) as
the local graph neural network:

𝑀 𝑙+1 = 𝐺𝐶𝑁𝑙 𝐴,𝑀𝑙

𝐺𝐶𝑁𝑙 𝐴,𝑀𝑙 = σ
෪
𝐷−

1
2 ሚ𝐴

෪
𝐷−

1
2𝑀𝑙𝑊𝑙

Graph of Graphs Neural Network

Graph pooling

Graph pooling is a computational strategy to reduce the number
of graph nodes; in this way, one has a unified graph-level rather
than node-level representation for graph-structured data while
the size and topology of an individual graph are changing.

Graph of Graphs Neural Network

Graph pooling examples

 (1) Global mean pooling

𝒚- 0 = Mean({𝐡 ∈ ℝd ,∀𝑣 ∈ 𝐺})v

 (2) Global max pooling

v𝒚- 0 = Max({𝐡∈ ℝd ,∀𝑣 ∈ 𝐺})
 (3) Global sum pooling

𝒚- 0 = Sum({𝐡 ∈ ℝd ,∀𝑣 ∈ 𝐺})v

 Issue: Global pooling over a (large) graph will lose information

Graph of Graphs Neural Network

Graph attention pooling

▪ The attention-based pooling method to select the
most representative substructure to represent the
molecule graph:

𝑠𝑙 = σ
෪
𝐷
−
1

2 ǁ𝐴
෪
𝐷
−
1

2𝑀𝑙𝑊𝑎𝑡𝑡
𝑙

𝑖𝑑𝑥 = 𝑡𝑜𝑝 𝑠, γ𝑛 ,
𝑠𝑚𝑎𝑠𝑘 = 𝑠𝑖𝑑𝑥 , 𝑀𝑠𝑒𝑙 = 𝑀⊙ 𝑠𝑚𝑎𝑠𝑘

Graph of Graphs Neural Network

Graph attention pooling

𝑠𝑙 = σ
෪
𝐷−

1
2 ሚ𝐴

෪
𝐷−

1
2𝑀𝑙𝑊𝑎𝑡𝑡

𝑙

𝑖𝑑𝑥 = 𝑡𝑜𝑝 𝑠, γ𝑛 ,
𝑠𝑚𝑎𝑠𝑘 = 𝑠𝑖𝑑𝑥, 𝑀𝑠𝑒𝑙 = 𝑀⊙ 𝑠𝑚𝑎𝑠𝑘

▪ 𝑀𝑠𝑒𝑙 is the representation matrix for the selected atoms in
the molecule graph

▪ After selection, the combination of mean pooling and sum
pooling is used to produce the representation for the
molecule graph, which is also the input for interaction
graph neural network.

Graph of Graphs Neural Network

Graph attention network:

▪ With the learned molecule graph
representations, the embedding is updated
based on the interaction network. The multi-
head attention mechanism is utilized:

𝑥𝐺𝑖
𝑙+1 = ብ

𝐾

κ = 1
σ ෍

𝑗∈η𝐺𝑖

α𝑖𝑗
κ𝑊κ

𝑙𝑥𝐺𝑗
𝑙

α𝑖𝑗 =
𝑒𝑥𝑝 LeakeyRelu 𝑎 𝑊𝑥𝐺𝑖 || 𝑊𝑥𝐺𝑗

Σ𝑛∈η𝐺𝑖
𝑒𝑥𝑝 LeakeyRelu 𝑎 𝑊𝑥𝐺𝑖 || 𝑊𝑥𝐺𝑛

Graph of Graphs Neural Network

Training objectives

The predicted interaction probability:
𝑝𝑖𝑗 = σ 𝑥𝐺𝑖

𝑇
⋅ 𝑥𝐺𝑗

Cross-entropy loss function:

ℒ𝒞𝒞ℐ = ෍

𝐺𝑖,𝐺𝑗 ∈𝐺𝐶𝐶𝐼

− 𝑙𝑜𝑔 𝑝𝑖𝑗 − 𝐸𝑚∼𝑃𝑗
𝑙𝑜𝑔 1 − 𝑝𝑖𝑚

Graph of Graphs Neural Network

Datasets:

▪ CCI tasks: The CCI dataset assigns a score from 0 to 999 to describe the
interaction probability where a higher score indicates higher interaction
probability. According to threshold score, we get two datasets with
chemical interaction probability score over 900 and 950: CCI900 and
CCI950.

▪ DDI tasks. For the drug-drug interaction prediction problem, DDI dataset
and the side effect dataset SE are used. A vector representation (attribute)
is assigned to each side effect type produced by pre-trained BERT model

Graph of Graphs Neural Network

Experiment results:

Graph of Graphs Neural Network

Case study:

Red: the substructures that are responsible of the interactions.

Our recent work

- “Denoising Variational Graph of Graphs Auto-Encoder for Predicting Structured Entity Interactions” -- TKDE 2023

Subgraph Isomorphism

Subgraph Counting

• Query graph 𝑞 = 𝑉, 𝐸, 𝑓𝑙

• Data graph 𝐺 = 𝑉′, 𝐸′, 𝑓𝑙

• Subgraph Isomorphism: injective function 𝑓𝑖𝑠𝑜: 𝑉 → 𝑉′:

• ∀𝑢 ∈ 𝑉, 𝑓𝑙 𝑢 = 𝑓𝑙(𝑓𝑖𝑠𝑜(𝑢))

• ∀𝑒 𝑢, 𝑢′ ∈ 𝐸, 𝑒(𝑓𝑖𝑠𝑜 𝑢 , 𝑓𝑖𝑠𝑜 𝑢′) ∈ 𝐸′

• Determining the existence of subgraph isomorphism is

NP-complete.

Subgraph Isomorphism

Graph isomorphism (a more complicated example)

https://en.wikipedia.org/wiki/Graph_isomorphism

Subgraph Counting

Subgraph Counting: Given a query graph 𝑞 and a data graph 𝐺, the problem is to count the number of

subgraphs in the data graph that match the query graph by subgraph isomorphism.

Subgraph isomorphisms

1. 𝑢1, 𝑢2, 𝑢3, 𝑢4 → 𝑣1, 𝑣4, 𝑣5, 𝑣10

Subgraph Counting

Subgraph Counting: Given a query graph 𝑞 and a data graph 𝐺, the problem is to count the number of

subgraphs in the data graph that match the query graph by subgraph isomorphism.

Subgraph isomorphisms

1. 𝑢1, 𝑢2, 𝑢3, 𝑢4 → 𝑣1, 𝑣4, 𝑣5, 𝑣10
2. 𝑢1, 𝑢2, 𝑢3, 𝑢4 → 𝑣1, 𝑣4, 𝑣5, 𝑣11

Subgraph Counting

Subgraph Counting: Given a query graph 𝑞 and a data graph 𝐺, the problem is to count the number of

subgraphs in the data graph that match the query graph by subgraph isomorphism.

Subgraph isomorphisms

1. 𝑢1, 𝑢2, 𝑢3, 𝑢4 → 𝑣1, 𝑣4, 𝑣5, 𝑣10
2. 𝑢1, 𝑢2, 𝑢3, 𝑢4 → 𝑣1, 𝑣4, 𝑣5, 𝑣11
3. 𝑢1, 𝑢2, 𝑢3, 𝑢4 → 𝑣1, 𝑣4, 𝑣6, 𝑣11

Why Subgraph Counting?

Analysis on Social Networks:

• Find co-authorships, community detection.

Analysis on Biological Networks:

• On brain, regulation, protein and molecule graphs.

• Summarize the structural patterns for the biological graphs.

Query Optimization for Subgraph Matching Queries:

• Cardinality estimation for multi-way join.

Applications

Existing Subgraph Counting Methods

Algorithmic Methods:

Enumeration-based methods:

• Computational complexity.

Sampling-based methods:

• Sampling failure.

Summary-based methods:

• Independent assumption.

Learning-based Methods:

Neural Subgraph Isomorphism Counting

A Learned Sketch for Subgraph Counting

Existing Subgraph Counting Methods

Neural Subgraph Isomorphism Counting:

▪ The query graph and data graph are input into the
graph neural networks for representation learning.

▪ The learned representations are input into the
RNN-based network named DIAMNet to predict the
subgraph counts.

Existing Subgraph Counting Methods

Neural Subgraph Isomorphism Counting:

▪ The data graph is usually large-scale.

▪ The model will face the efficiency and scalability
issue.

▪ Since the data graph contains more information, it
is hard to distinguish the counting results of
different query graphs when the data graph is
large. The representation of data graph will
dominate the computation in this case.

Existing Subgraph Counting Methods

A Learned Sketch for Subgraph Counting:

▪ The initial features of query nodes are computed
based on the labels and structure of data graph by
the graph embedding methods like DeepWalk.

▪ The query graph is decomposed into small
substructures and fed into the graph neural network
with active learner to predict the subgraph counts.

Existing Subgraph Counting Methods

A Learned Sketch for Subgraph Counting:

▪ Cannot fully utilize the data graph information. The
topological information of data graph is somehow
ignored.

▪ Consequently, the model has limited robustness,
i.e., the result can be easily affected by minor
modification on the query graph.

Goal

▪ Utilize both query and data graph information.

▪ Avoid efficiency and scalability issue.

▪ Improve the subgraph counting accuracy.

Neural Subgraph Counting method: NeurSC

Our recent work

- “Neural Subgraph Counting with Wasserstein Estimator” -- SIGMOD 2022

NeurSC
Substructure Extraction

• Complete Candidate Vertex Set (𝐶𝑆):

• 𝐶𝑆 𝑢 for query vertex 𝑢 ∈ 𝑉 is a set of data vertices 𝑣 ∈ 𝑉′

• If 𝑢, 𝑣 exists in a match from 𝑞 to 𝐺, then 𝑣 ∈ 𝐶𝑆(𝑢)

• First, we determine the complete candidate vertex set for all

query vertices using local pruning and global refinement.

• Based on neighboring and label information

• Candidate set of query 𝑞: 𝐶𝑆 q =∪𝑢∈𝑉 𝐶𝑆(𝑢)

• Induced subgraph of G with vertices 𝐶𝑆 q is used as the

candidate substructures, denoted as 𝐺𝑠𝑢𝑏

NeurSC

Feature Initialization

𝒙𝑣 = 𝑓𝑏 𝑑𝑒𝑔𝑣 ||𝑓𝑏 𝑓𝑙 𝑣 ||𝑖=1
𝑘 𝑀𝑃∀𝑣′∈𝑁 𝑖 𝑣 𝑓𝑏 𝑑𝑒𝑔𝑣′ ||𝑓𝑏 𝑓𝑙 𝑣′

Degree information Label information Neighbor information

• || denotes the concatenation.

• 𝑓𝑏 denotes the binary encoding that converts the decimal digits into binary numbers.

• 𝑀𝑃 denotes the mean pooling.

• 𝑁 𝑖 𝑣 denotes the 𝑖-hop neighbors of 𝑣.

NeurSC
Wasserstein Estimator

• Intra-Graph Neural Network

• For both query graph and substructure.

• Capture structural and attribute information.

• 𝒉𝒖
(𝒌)

= 𝑴𝑳𝑷 𝒌 (𝟏 + 𝝐 𝒌 𝒉𝒖
𝒌−𝟏

, σ𝒖′∈𝑵𝒒(𝒖)
𝒉𝒖′
(𝒌)
)

• Inter-Graph Neural Network

• Construct a bipartite graph for inter-relationship.

• Capture the mapping relationship between query

vertices and corresponding candidate vertices

• 𝒉𝒖
(𝒌)

= 𝝈(𝒂𝒖𝒖
𝒌
𝜽 𝒌 𝒉𝒖

𝒌−𝟏
, σ𝒗∈𝑵𝑮𝑩

(𝒖)𝒂𝒖𝒗
𝒌
𝜽 𝒌 𝒉𝒗

(𝒌)
)

NeurSC
Wasserstein Estimator
• Readout

• Sum Pooling

• Concatenation of intra- and inter-graph representations.

• Prediction

• Multi-layer perceptron.

• Wasserstein Discriminator

• Minimize Wasserstein distance between 𝑞 and 𝐺
• Further utilize the vertex correspondence

information between 𝑞 and 𝐺
• 𝐿𝑤 𝑞, 𝐺𝑠𝑢𝑏 = σ𝑢∈𝑉′ 𝑞 𝑓𝜔 ℎ𝑢 − σ𝑣∈𝑉′ 𝐺𝑠𝑢𝑏

𝑓𝜔 ℎ𝑣

• Expressive Power

• WEst is as powerful as 1-Weisfeiler-Lehman test.

NeurSC
Learning objective and training procedure
• q-error loss

• 𝐿𝑐 𝑞 = max
𝑐 𝑞

Ƹ𝑐 𝑞 +𝜀
,
Ƹ𝑐 𝑞

𝑐 𝑞

• Optimize the model by reducing the prediction error.

• Overall loss

• 𝐿 𝑞 = 1 − 𝛽 𝐿𝑐 𝑞 −
𝛽

|𝐺𝑠𝑢𝑏|
σ𝑔∈𝐺𝑠𝑢𝑏

𝐿𝑤(𝑞, 𝑔)

• Wasserstein loss

• 𝐿𝑤 𝑞, 𝐺𝑠𝑢𝑏 = σ𝑢∈𝑉′ 𝑞 𝑓𝜔 ℎ𝑢 − σ𝑣∈𝑉′ 𝐺𝑠𝑢𝑏
𝑓𝜔 ℎ𝑣

• Minimize the Wasserstein distance.

Experiment
Experimental Setup

• Dataset

• 7 data graphs + 5 query sets.

• Parameter settings

• Initial dimension: 64

• Hidden and output dimension 128

• Intra- and Inter-GNN have 2 layers.

• Prediction network is a 4-layer MLP.

• Compared methods

• 5 non-learning methods.

• 2 learning-based methods with 2 variants.

• 2 variants of NeurSC for ablation study.

• Implementation

• Substructure extraction: C++

• WEst: Python + Pytorch Geometric

Experiment Results
Accuracy Evaluation • Evaluation metric

• q-error: max(
max 1,𝑐

max 1, Ƹ𝑐
,
max 1, Ƹ𝑐

max 1,𝑐
)

Subgraph Matching

The objective of the subgraph matching is searching for all subgraph
isomorphisms from query graph q to data graph G

Subgraph Isomorphism

Subgraph Isomorphism

Subgraph isomorphisms

1. 𝑢1, 𝑢2, 𝑢3, 𝑢4 → 𝑣1, 𝑣4, 𝑣5, 𝑣10
2. 𝑢1, 𝑢2, 𝑢3, 𝑢4 → 𝑣1, 𝑣4, 𝑣5, 𝑣11
3. 𝑢1, 𝑢2, 𝑢3, 𝑢4 → 𝑣1, 𝑣4, 𝑣6, 𝑣11

Existing Subgraph Matching Methods

There are two major categories of subgraph matching methods:

▪ Backtracking-based methods

▪ Join-based methods

In this work, we focus on the backtracking-based methods.

Existing Subgraph Matching Methods

The backtracking-based methods can be partitioned in three
main phases:

1. The complete candidate vertex set generation.

2. Matching order generation.

3. Matching enumeration.

Backtracking-based Methods

Complete candidate vertex set generation is to filter out the
unpromising vertices, and hence reduce the search space before
the enumeration process begins.

Backtracking-based Methods

Matching order generation phase generates the matching order φ
to guide the enumeration of matched subgraphs.

Backtracking-based Methods

The enumeration procedure finds all matches of the query
subgraph q in the data graph G with given matching order φ.

Subgraph Matching

Subgraph matching has wide applications such as query in graph
database and biological graph analytics.

However, it has been proven that the subgraph matching is NP-
complete. We cannot optimize the worst-case time cost.

In this work, we aim to reduce the enumeration time on the
average case by proposing a novel query vertex ordering
method.

▪ Background

▪ Motivation

▪ Framework

▪ Feature Representations

▪ Query Vertex Ordering as Markov Decision Process

▪ Policy Training

▪ Experiments

Limitations of Existing Order Generation
Methods
The existing subgraph matching methods usually generate the
matching order based on the heuristic values, here are some
examples:

▪ Infrequent edge first ordering

▪ Infrequent label first ordering

▪ Path-based ordering.

Limitations of Existing Order Generation
Methods
Two major limitations:

▪ Cannot fully use the graph information.

▪ Greedy heuristics can lead to local optimum.

If ordering based on degree (RI)

Degree: 2

Degree: 2 Degree: 2

Degree: 2

If ordering based on label frequency
LF: Label frequency

LF: 3/13 LF: 3/13

LF: 6/13

LF: 1/13

Greedy heuristics can lead to local optimum

The heuristic-based greedy methods can reduce the most
redundant intermediate results.

However, these methods cannot consider the long-term query
time cost.

The exact optimal order can only be found after all possible order
permutations are evaluated.

Our solutions

Motivated by the aforementioned limitations, we proposed the
following approaches:

▪ Capture the graph information with graph neural network.

▪ Try to approach the global optimal with reinforcement learning.

▪ Background

▪ Motivation

▪ Framework

▪ Feature Representations

▪ Query Vertex Ordering as Markov Decision Process

▪ Policy Training

▪ Experiments

Framework

Our recent work

- “Reinforcement learning based query vertex ordering model for subgraph matching” -- ICDE 2022

▪ Background

▪ Motivation

▪ Framework

▪ Feature Representations

▪ Query Vertex Ordering as Markov Decision Process

▪ Policy Training

▪ Experiments

Feature Initialization

We use the important statistical heuristics of query vertices to
initialize the input query representations.

Based on the input features, our model can fully exploit the
information within the features while preserving the relations
between the query and data graphs.

Feature Initialization

▪ Degree of node:

▪ Label of node:

▪ Query node ID:

Feature Initialization

▪ Frequency of data vertices with greater degree than the query
node

▪ Frequency of data vertex with same label as query vertex:

Feature Initialization

Lastly, we put two indicator variables in the initial feature:

▪ Number of unordered vertices:

▪ Trailing indicator that shows whether the node has been ordered:

▪ Background

▪ Motivation

▪ Framework

▪ Feature Representations

▪ Query Vertex Ordering as Markov Decision Process

▪ Policy Training

▪ Experiments

Query Vertex Ordering as Markov Decision
Process

To exploit the reinforcement learning, we need to model our query
vertex ordering problem as a Markov decision process (MDP).

Specifically, we need to define:

▪ State space

▪ Action space

▪ Action probability

▪ Reward

State Space

In this work, the state space is defined as the all (partial) vertex
order sequence.

Specifically, we use (the order at time step t) to denote the
state at time step t.

Action Space

With the order (state of the MDP), we define the action space
as which is the neighbor
vertices set of the ordered vertices in .

Consequently, the action at each time step t is to select a node
from the action space (neighbor set).

Action Probability

With the state and corresponding action space.

The key problem is to compute the probabilities
for each action in the action space.

To this end, we design a Graph Neural Network
(GNN)-based policy network.

P=? P=?

Policy Network

Graph convolutional network:

Action probability with the state at time step t:

Reward Design

Three main rewards:

▪ Enumeration reward

▪ Step-wise validate reward

▪ Entropy reward

Enumeration Reward

The reduced enumeration number:

Enumeration reward:

Other rewards

Step-wise validation: Entropy reward:

Ensure the model can perform
more actions.✔ ✔

×

Reward Design

With the aforementioned rewards, our overall rewards at time
step t is as follows:

The overall reward is as follows:

▪ Background

▪ Motivation

▪ Framework

▪ Feature Representations

▪ Query Vertex Ordering as Markov Decision Process

▪ Policy Training

▪ Experiments

Policy Training

In this work, we use the proximal policy optimization (PPO) to
train our policy network with the following loss function:

▪ Background

▪ Motivation

▪ Framework

▪ Feature Representations

▪ Query Vertex Ordering as Markov Decision Process

▪ Policy Training

▪ Experiments

Experiment Setup

Compared

methods:

QuickSI

RI

VF2++

VEQ

Hybrid

RL-QVO

Dataset |𝑽| |𝑬| |𝑳| d

Citeseer 3,327 4,732 6 1.4

Yeast 3,112 12,519 71 8.0

DBLP 317,080 1,049,866 15 6.6

Youtube 1,134,890 2,987,624 25 5.3

Wordnet 76,853 120,399 5 3.1

EU2005 862,664 16,138,468 40 37.4

Dataset Statistics

Evaluation Metrics

▪ Query processing time

▪ Enumeration time

Average Query Processing Time

Query Processing Time Percentile
Comparison

Enumeration Time Comparison

Fraud Detection

Background

An attributed bipartite graph is a type of graph which consists of two sets of vertices that are linked by

edges. The vertices have additional attributes, making this graph particularly useful for representing

information in the field of e-commerce.

Attributed Bipartite Graph

Background

Group-based fraud is becoming increasingly common:

“Ride Item’s Coattails” attack (edge classification)

Sockpuppet-based Targeted Attack on Reviewing Systems

(STARS attack) (vertex classification)

Group-based Frauds on Attributed Bipartite Graphs

Image source: STARS: Defending against Sockpuppet-Based Targeted Attacks on Reviewing Systems

RICD ((𝛼, 𝑘1, 𝑘2)-biclique): fraud detection method for “Ride Item’s Coattails” attack. Can only utilize

structural information.

Tianchi competition winner’s algorithm: classification method. Can only use attribute information.

Background

SOTA method for “Ride Item’s Coattails” attack

Image source: Large-scale Fake Click Detection for E-commerce Recommendation Systems

RTV: fraud detection method for Sockpuppet-based Targeted Attack on Reviewing Systems (STARS).

Unable to make good use of label information.

Background

SOTA method for STARS attack

Image source: STARS: Defending against Sockpuppet-Based Targeted Attacks on Reviewing Systems

Background

Classification Methods:

• Imbalanced labeled vertices, community information.

Cohesive Subgraph Mining Methods:

• Attribute and label information, suffer from NP-completeness.

Fraud Detection Methods:

• Global topological and attribute information, label information, manual parameter setting.

Existing methods

Overview

Group-based Fraud Detection method: GFDN

Our recent work

- “Group-based Fraud Detection Network on e-Commerce Platforms” -- KDD 2023

Overview

Group-based Fraud Detection method: GFDN

Overview

Group-based Fraud Detection method: GFDN

Overview

Group-based Fraud Detection method: GFDN

GFDN

Structural Feature Initialization

(𝛼, 𝛽)-core:

Given a bipartite graph G and integers 𝛼, 𝛽 ∈ Z+ ,

(𝛼, 𝛽)-core of G is denoted as G ′ which consists of

two vertex sets U′ ⊆ U and V′ ⊆ V.

The (𝛼, 𝛽)-core G ′ is a maximal bipartite subgraph

induced by U′ ∪ V′ from G in which all the vertices in

U′ have degrees at least 𝛼 and all the vertices in V′

have degrees at least 𝛽.

Image source: Efficient (α, β)-core Computation: an Index-based Approach

GFDN

Structural Feature Initialization

GFDN will generate structural features for vertices

based on their existence in different (𝛼, 𝛽)-core.

Structural Features All-ones Vector Weight MatrixElement-wise Product

GFDN

Fraudster Community Detection

BDCN - Autoencoder:

Autoencoder in Bipartite Deep Clustering Network

(BDCN) can:

1. preserving both structural and attribute information

from the input features.

2. Generate high-quality community representation

for customer vertices.

It can achieve self-supervised fraud community

detection using a loss function measures with

Student's t-distribution kernel.

GFDN

Fraudster Community Detection

BDCN - GNN:

GNN in BDCN can aggregate on attribute bipartite

graph and preserve the attribute information and

structural information of the graph. The output of

encoding layer will be used.

GFDN

Training Objective

"Ride Item’s Coattails" Attack:

In "Ride Item’s Coattails" attack, not all edges related

to fraudsters necessarily have attack implications.

GFDN will perform multi-task training on this issue,

predicting both fraudsters and fraudulent attack.

STARS Attack:

STARS attack detection aims to detect fraudsters,

in which case GFDN only needs to perform the

vertex classification task.

GFDN

Training Objective

The final loss function will be composed of the loss functions of the aforementioned modules, including

autoencoder, community prediction, fraudster prediction, and fraudulent prediction. The sum of the

weights of all parts of them is 1.

Autoencoder Fraudster FraudulentCommunity

Experiments

Experimental Setup

• Dataset

• 4 real-life datasets.

• Parameter settings

• The number of GNN layer: 4.

• The number of community: 32.

• Hidden dimension: 128.

• The selected GNN is GraphSAGE.

• Compared methods

• 5 learning-based methods.

• 2 pattern-based methods.

• 4 fraud detection methods.

• A naïve model and four ablated GFDNs

• Implementation

• Structure information extraction: C++

• Other Parts of the Model :Python + Pytorch Geometric.

Experiments

Effectiveness Evaluation Results for “Ride Item’s Coattails” Detection

Experiments

Comparison with Pattern-based Algorithms

Experiments

Query Time Evaluation of “Ride Item’s Coattails” Detection

Experiments

Effectiveness Evaluation Results for STARS Detection

Experiments

Efficiency Evaluation Results for STARS Detection

Thank you!

Q&A

hanchen.wang@uts.edu.au

https://hanchen-wang.com/

mailto:hanchen.wang@uts.edu.au
https://hanchen-wang.com/

