
UNSW COMP9312_23T2

COMP9312 Advanced
Graph Traversal

UNSW COMP9312_23T22

Outline

• Graph traversal

• Complex graph structure

• Disjoint set algorithm

• Connected Components

• Efficiency on Medium Dataset

UNSW COMP9312_23T2

Exercise 1: Graph Traversal

3

• Breadth-first traversal
Considering the implementation of a breadth-first traversal on a
graph:
• Choose any vertex, mark it as visited and push it onto queue
• While the queue is not empty

• Pop the top vertex 𝑣 from the queue
• For each vertex adjacent to 𝑣 that has not been visited:

• Mark it as visited
• Push it onto the queue

It continues until the queue is empty
Note: if there are no unvisited vertices, the graph is connected.

The size of the queue is at most 𝑂(|𝑉|)

UNSW COMP9312_23T2

Exercise 1: Graph Traversal

4

• Depth-first traversal
Considering the implementation of a depth-first traversal on a graph:
• Choose any vertex, mark it as visited
• From that vertex:

• If find an unvisited adjacent vertex not visited yet, move to that vertex
• Otherwise, go back to the last vertex that still has unvisited adjacent vertices.

• Continue until there are no visited vertices with unvisited adjacent vertices.

Two implementation
• Recursive approach (a statement in a function calls itself repeatedly.)
• Iterative approach (a loop executes repeatedly until the controlling condition

becomes false)

UNSW COMP9312_23T2

Exercise 1: Graph Traversal

5

• Depth-first traversal
• Recursive approach (a statement in a function calls itself repeatedly.)
• Iterative approach (a loop executes repeatedly until the controlling condition

becomes false)

UNSW COMP9312_23T2

Exercise 1: Graph Traversal

6

• Implement BFS(G, v) and DFS(G, v)
• Load the graph in Figure 1 and check the connectivity from the

following node pairs: (𝐴, 𝐵), (𝐴, 𝐶), (𝐴, 𝐷), (𝐴, 𝐸).

For example, using BFS: if the target vertex is in the traversal,
then it is connected.

Now, you have 10 minutes to implement Q1.

UNSW COMP9312_23T2

Exercise 2: Complex Graph Structures

7

• Change the definition of class SimpleGraph to Directed
weighted graph by yourself. The new class should support the load of
directed weighted graphs and allow self-loop and multiple edges
between two vertices.

UNSW COMP9312_23T2

Exercise 2: Complex Graph Structures

8

• Implement a function, in which when inputting any vertex v, it outputs the
sum of the weights of all the indegree edges of v. Please refer to the
function sumIndegree(G, u).

Now, you have 5 minutes
to implement Q2.

UNSW COMP9312_23T29

• Attempt 1: Quick find
• SetName[i] = name of the set

containing element i
• Complexity:

Find: O(1), Union: O(n)

Disjoint Sets Algorithm
• Attempt2: Smart Union
• Link smaller tree to the larger one
• Complexity: Find/Union: O(logn)

UNSW COMP9312_23T210

• Ultimate Union-Find: Path compression

• Any single find can still be O(log(n)), but later finds
on the same path are faster.

• Amortized O(1) time for each Union or Find

Disjoint Sets Algorithm

Find(10)

UNSW COMP9312_23T211

• Load the graph in Figure using UndirectedGraph

• The function ConnectedComponents(G, method) will compute all the connected components

• Implement the class QuickFind and UnionFind
• Output the connected component each vertex belongs to and the total number of connected

components. (Each connected component can be represented by any unique identifier, e.g., the
root vertex in the disjoint structure or the vertex’s sequence number in the ‘vertex_dict’ of
‘UndirectedGraph’.)

Exercise 3: Connected Components

Now, you have 10 minutes
to implement Q3:

UNSW COMP9312_23T212

• Use the dataset in the dataset_30k.txt which contains 30000 nodes and three components.

• Download the dataset from github in colab using the command “!git clone
https://github.com/guaiyoui/COMP9312.git”. And use “!ls” to check if the download is successful.

Exercise 4: Efficiency on Medium dataset

https://github.com/guaiyoui/COMP9312.git

UNSW COMP9312_23T2

Q & A

13

