
COMP9312 Advanced
Graph Traversal

• Topological Sorting

• Tracking Unvisited Vertices

• Implement topological sorting

• Initialize an array of in-degree
• Create a queue and initialize it with all vertices that have in-

degree as 0.

While the queue is not empty:
• Pop a vertex from the queue
• Decrement the in-degree of each neighbor
• Those neighbors whose in-degree was decremented to

zero are pushed onto queue.

The size of the queue is at most 𝑂(|𝑉|)

Now, you have 10 minutes to implement ex1.

Possible topological sorting sequences:

• Create two arrays:
• unvisited: contain the unvisited vertices
• loc_in_unvisited: contain the location of vertex in the array

• Visit vertex which is in the middle position of unvisited array
• Example:

Suppose we visit G in entry 6,
we copy the last unvisited vertex into this location and update the
location array for this value

• Visit vertex which is in the last position of unvisited array
• Example:

Suppose we visit H in entry 7,
we simply return the last entry of the unvisited array and return it.

• Complexity:
• The initialization is O(|V|)
• Determining if the vertex is visited is fast: O(1)
• Marking vertex as having been visited is also fast: O(1)
• Returning a vertex that is unvisited is also fast: O(1)

• Implement the function trackConnectComponents(G) which
inputs the graph in Figure 2 and print the connected
components.

Now, you have 10 minutes to
implement ex2.

Q & A

	Default Section
	Slide 1: COMP9312 Advanced Graph Traversal
	Slide 2: Outline
	Slide 3: Exercise 1: Topological Sorting
	Slide 4: Exercise 1: Topological Sorting
	Slide 5: Exercise 2: Tracking Unvisited Vertices
	Slide 6: Exercise 2: Tracking Unvisited Vertices
	Slide 7: Exercise 2: Tracking Unvisited Vertices
	Slide 8: Exercise 2: Tracking Unvisited Vertices
	Slide 9: Exercise 2: Tracking Unvisited Vertices
	Slide 10: Q & A

