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« Reachability
 Transitive closure
 Tree cover

* Implementation




ability

Main idea

« Given a directed graph and two vertices u.and v, a reachability query
asks for if there exists a path from u to v.




ability

« Use BFS to answer the following queries:
« Can Greach B?
« Can Creach A?
« Can Ereach F?

What is the time
complexity for
query processing?




itive closure

Definition
A transitive closure is a Boolean matrix storing the answers of all
possible reachability queries. The size of the matrix is 0(n?).
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The original graph

The transitive closure of G




itive closure

 Floyd-Warshall Algorithm

bool tc[num_vertices][num_vertices];

// Initialize the matrix tc: 0(n*2)
tc[i][j] = 1 if there is an edge from i to j, or i == j;

// Run Floyd-Warshall
for ( int k = @; k < num_vertices; ++k ) {
for ( int i = @; 1 < num_vertices; ++i ) {
for ( int j = 9; j < num_vertices; ++j ) {
} tc[i]1[3] = te[il[3] || (tc[il[k] && tc[k][31);

|dea: After the iteration k, find the reachability pairs(i,j) where the
reachability path is formed by {v,, v, -, v}




itive closure

« Construct the transitive closure for graph G.
« Use it to answer the reachability in Ex1.2
« What is the time/space complexity for answering queries in this case?

Now, you have 3 minutes to
do Ex2.
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e Can Greach B? False
e Can Creach A? True
« Can Ereach F? False




over

* Find a spanning tree of example graph G

One possible tree cover
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over

« Algorithm1:

1. Find a spanning tree (tree cover) T of G

2. Assign post-order numbers and indices as
intervals to the nodes of T

3. Go through vertices in reverse topological
order. For each processed vertex g, consider
all its in-edges (p, q). Add the intervals of q
to the interval of p. If any interval is
subsumed, discard it.

post-order-traversal(root):
for each v of root’s children from left to right:

// traverse the subtree rooted at v N ow, yO u h dave 5 m | nutes to
post-order-traversal(v) d 0 EX3 2
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visit root




over

« Algorithm1:

1. Find a spanning tree (tree cover) T of G

2. Assign post-order numbers and indices as
intervals to the nodes of T

3. Go through vertices in reverse topological
order. For each processed vertex g, consider
all its in-edges (p, q). Add the intervals of q
to the interval of p. If any interval is
subsumed, discard it.

post-order-traversal(root):
for each v of root’s children from left to right:
// traverse the subtree rooted at v [ > A:2,B:7,C:5, D4, E1,F:6,G:3

post-order-traversal(v)
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visit root




over

« Algorithm1:

1. Find a spanning tree (tree cover) T of G

2. Assign post-order numbers and indices as
intervals to the nodes of T

3. Go through vertices in reverse topological
order. For each processed vertex g, consider
all its in-edges (p, q). Add the intervals of q
to the interval of p. If any interval is
subsumed, discard it. [1,1]

For each vertex, compute the A2,B:7,C:5D:4,E1,F6,G3
minimum post-order number of its ' > A:2,B:1,C:4,D:4,E:1, F:6, G:1
subtree
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over

Algorithm1:
1. Find a spanning tree (tree cover) T of G
2. Assign post-order numbers and indices as
intervals to the nodes of T
3. Go through vertices in reverse

topological order. For each processed
vertex q, consider all its in-edges (p, q).
Add the intervals of q to the interval of p.
If any interval is subsumed, discard it.

Topological order:
{B,G,C,F,D,AE}
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[1,7]

[2,2]

[1,1]

Number of intervals: 14
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* Query Processing: ? (u -» v ) = if the interval of
v is within the updated interval of u.
 7G - B = False
e ?7C > A>True
e ?E - F = False

Number of intervals: 14
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over

« Optimal tree cover
The tree cover with the minimum number of intervals in the resulting compression
scheme.

An optimal tree cover
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over

» Repeat the above process for the given optimal tree cover.

Now, you have 5
minutes to do Ex3.4.

An optimal tree cover
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over

» Repeat the above process for the given optimal tree cover.




over

» Repeat the above process for the given optimal tree cover.

[1,7]

Number of intervals: 9
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mentation

» Load the example graph G via the class ‘DirectedGraph’ in tutorial_5.py.

* Implement the class ‘Reachability’ which inputs the example graph G and answer the queries in
Exercise 1.2.

* You can choose one of the algorithms mentioned in lecture.

Now, you have 15
minutes to do Ex4.
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