


Qutline

« Reachability
 Transitive closure
 Tree cover

* Implementation




ability

Main idea

« Given a directed graph and two vertices u.and v, a reachability query
asks for if there exists a path from u to v.




ability

« Use BFS to answer the following queries:
« Can Greach B?
« Can Creach A?
« Can Ereach F?

What is the time
complexity for
query processing?




itive closure

Definition
A transitive closure is a Boolean matrix storing the answers of all
possible reachability queries. The size of the matrix is 0(n?).

unbHh WIN|R|O

O|lOoo|OC|OC|O| =] O
oC|lo|rR|R|R|R|mKL
Ol O0O|OC|RLr|O|O|N
O|O0O|rRr|OC|O| R, W
O|lr|RP|(R|[FRP[RLH&
Rl RPr|R[(R|RP| =0V

2
G

The original graph

The transitive closure of G




itive closure

 Floyd-Warshall Algorithm

bool tc[num_vertices][num_vertices];

// Initialize the matrix tc: 0(n*2)
tc[i][j] = 1 if there is an edge from i to j, or i == j;

// Run Floyd-Warshall
for ( int k = @; k < num_vertices; ++k ) {
for ( int i = @; 1 < num_vertices; ++i ) {
for ( int j = 9; j < num_vertices; ++j ) {
} tc[i]1[3] = te[il[3] || (tc[il[k] && tc[k][31);

|dea: After the iteration k, find the reachability pairs(i,j) where the
reachability path is formed by {v,, v, -, v}




itive closure

« Construct the transitive closure for graph G.
« Use it to answer the reachability in Ex1.2
« What is the time/space complexity for answering queries in this case?

Now, you have 3 minutes to
do Ex2.

7 UNSW .TZ




itive closure

OOOb—'r—-r—'OU

I—li—il—lh—ﬂl—'i—li—'m

Q| mmgo0|[®| e

Rl e el el Rl el
olo|lolo|lc|—=|o|m
ololo|lo=|—=|lc|ln
= E = =R e K=l ey
— o= ]

e Can Greach B? False
e Can Creach A? True
« Can Ereach F? False




over

* Find a spanning tree of example graph G

One possible tree cover

UNSW .TZ




over

« Algorithm1:

1. Find a spanning tree (tree cover) T of G

2. Assign post-order numbers and indices as
intervals to the nodes of T

3. Go through vertices in reverse topological
order. For each processed vertex g, consider
all its in-edges (p, q). Add the intervals of q
to the interval of p. If any interval is
subsumed, discard it.

post-order-traversal(root):
for each v of root’s children from left to right:

// traverse the subtree rooted at v N ow, yO u h dave 5 m | nutes to
post-order-traversal(v) d 0 EX3 2

10 UNSW .TZ

visit root




over

« Algorithm1:

1. Find a spanning tree (tree cover) T of G

2. Assign post-order numbers and indices as
intervals to the nodes of T

3. Go through vertices in reverse topological
order. For each processed vertex g, consider
all its in-edges (p, q). Add the intervals of q
to the interval of p. If any interval is
subsumed, discard it.

post-order-traversal(root):
for each v of root’s children from left to right:
// traverse the subtree rooted at v [ > A:2,B:7,C:5, D4, E1,F:6,G:3

post-order-traversal(v)
11 UNSW .TZ

visit root




over

« Algorithm1:

1. Find a spanning tree (tree cover) T of G

2. Assign post-order numbers and indices as
intervals to the nodes of T

3. Go through vertices in reverse topological
order. For each processed vertex g, consider
all its in-edges (p, q). Add the intervals of q
to the interval of p. If any interval is
subsumed, discard it. [1,1]

For each vertex, compute the A2,B:7,C:5D:4,E1,F6,G3
minimum post-order number of its ' > A:2,B:1,C:4,D:4,E:1, F:6, G:1
subtree

12 UNSW .TZ




over

Algorithm1:
1. Find a spanning tree (tree cover) T of G
2. Assign post-order numbers and indices as
intervals to the nodes of T
3. Go through vertices in reverse

topological order. For each processed
vertex q, consider all its in-edges (p, q).
Add the intervals of q to the interval of p.
If any interval is subsumed, discard it.

Topological order:
{B,G,C,F,D,AE}

13

[1,7]

[2,2]

[1,1]

Number of intervals: 14

UNSW .TZ




over

* Query Processing: ? (u -» v ) = if the interval of
v is within the updated interval of u.
 7G - B = False
e ?7C > A>True
e ?E - F = False

Number of intervals: 14

14 UNSW .TZ




over

« Optimal tree cover
The tree cover with the minimum number of intervals in the resulting compression
scheme.

An optimal tree cover

15 UNSW .TZ




over

» Repeat the above process for the given optimal tree cover.

Now, you have 5
minutes to do Ex3.4.

An optimal tree cover

16 UNSW .TZ




over

» Repeat the above process for the given optimal tree cover.




over

» Repeat the above process for the given optimal tree cover.

[1,7]

Number of intervals: 9

18 UNSW .TZ




mentation

» Load the example graph G via the class ‘DirectedGraph’ in tutorial_5.py.

* Implement the class ‘Reachability’ which inputs the example graph G and answer the queries in
Exercise 1.2.

* You can choose one of the algorithms mentioned in lecture.

Now, you have 15
minutes to do Ex4.

19 UNSW .TZ




Q&A




	Default Section
	Slide 1: COMP9312 Reachability Queries
	Slide 2: Outline
	Slide 3: Reachability
	Slide 4: Reachability
	Slide 5: Transitive closure
	Slide 6: Transitive closure
	Slide 7: Transitive closure
	Slide 8: Transitive closure
	Slide 9: Tree cover
	Slide 10: Tree cover
	Slide 11: Tree cover
	Slide 12: Tree cover
	Slide 13: Tree cover
	Slide 14: Tree cover
	Slide 15: Tree cover
	Slide 16: Tree cover
	Slide 17: Tree cover
	Slide 18: Tree cover
	Slide 19: Implementation
	Slide 20: Q & A


