
COMP9312 Reachability
Queries

• Reachability

• Transitive closure

• Tree cover

• Implementation

Main idea

• Given a directed graph and two vertices 𝑢.and 𝑣, a reachability query
asks for if there exists a path from 𝑢 to 𝑣.

• Use BFS to answer the following queries:
• Can G reach B?
• Can C reach A?
• Can E reach F?

What is the time
complexity for
query processing?

Definition
• A transitive closure is a Boolean matrix storing the answers of all

possible reachability queries. The size of the matrix is 𝑂(𝑛2).

• Floyd-Warshall Algorithm

Idea: After the iteration k, find the reachability pairs(i,j) where the
reachability path is formed by {𝑣0, 𝑣1, ⋯ , 𝑣𝑘}

• Construct the transitive closure for graph G.
• Use it to answer the reachability in Ex1.2
• What is the time/space complexity for answering queries in this case?

Now, you have 3 minutes to
do Ex2.

• Can G reach B? False
• Can C reach A? True
• Can E reach F? False

• Find a spanning tree of example graph G

• Algorithm1:
1. Find a spanning tree (tree cover) T of G
2. Assign post-order numbers and indices as

intervals to the nodes of T
3. Go through vertices in reverse topological

order. For each processed vertex q, consider
all its in-edges (p, q). Add the intervals of q
to the interval of p. If any interval is
subsumed, discard it.

Now, you have 5 minutes to
do Ex3.2.

• Algorithm1:
1. Find a spanning tree (tree cover) T of G
2. Assign post-order numbers and indices as

intervals to the nodes of T
3. Go through vertices in reverse topological

order. For each processed vertex q, consider
all its in-edges (p, q). Add the intervals of q
to the interval of p. If any interval is
subsumed, discard it.

A:2, B:7, C:5, D:4, E:1, F:6, G:3

7

3 5 6

1 2 4

• Algorithm1:
1. Find a spanning tree (tree cover) T of G
2. Assign post-order numbers and indices as

intervals to the nodes of T
3. Go through vertices in reverse topological

order. For each processed vertex q, consider
all its in-edges (p, q). Add the intervals of q
to the interval of p. If any interval is
subsumed, discard it.

A:2, B:7, C:5, D:4, E:1, F:6, G:3

[1,7]

[1,3] [4,5] [6,6]

[1,1] [2,2] [4,4]

For each vertex, compute the
minimum post-order number of its
subtree

A:2, B:1, C:4, D:4, E:1, F:6, G:1

• Algorithm1:
1. Find a spanning tree (tree cover) T of G
2. Assign post-order numbers and indices as

intervals to the nodes of T
3. Go through vertices in reverse

topological order. For each processed
vertex q, consider all its in-edges (p, q).
Add the intervals of q to the interval of p.
If any interval is subsumed, discard it.

[1,7]

[1,3]
[4,5]

[6,6]

[1,1]
[2,2] [4,4]

[1,1]
[2,2]
[6,6]

[1,1]

[1,1]
[2,2]
[1,1]Topological order:

{B,G,C,F,D,A,E}
Number of intervals: 14

• Query Processing: ? 𝑢 → 𝑣 ⇒ if the interval of
v is within the updated interval of u.

• ? 𝐺 → 𝐵 ⇒ 𝐹𝑎𝑙𝑠𝑒
• ? 𝐶 → 𝐴 ⇒ 𝑇𝑟𝑢𝑒
• ? 𝐸 → 𝐹 ⇒ 𝐹𝑎𝑙𝑠𝑒

[1,7]

[1,3]
[4,5]

[6,6]

[1,1]
[2,2] [4,4]

[1,1]
[2,2]
[6,6]

[1,1]

[1,1]
[2,2]
[1,1]

Number of intervals: 14

• Optimal tree cover
The tree cover with the minimum number of intervals in the resulting compression
scheme.

• Repeat the above process for the given optimal tree cover.

Now, you have 5
minutes to do Ex3.4.

• Repeat the above process for the given optimal tree cover.

[1,7]

[1,5]

[1,1] [2,4]

[2,3]

[2,2]

[6,6]

• Repeat the above process for the given optimal tree cover.

[1,7]

[1,5]

[1,1]
[2,4]

[2,3]

[2,2]

[6,6]

[2,2]

[2,3]

Number of intervals: 9

• Load the example graph G via the class ‘DirectedGraph’ in tutorial_5.py.

• Implement the class ‘Reachability’ which inputs the example graph G and answer the queries in

Exercise 1.2.

• You can choose one of the algorithms mentioned in lecture.

Now, you have 15
minutes to do Ex4.

Q & A

	Default Section
	Slide 1: COMP9312 Reachability Queries
	Slide 2: Outline
	Slide 3: Reachability
	Slide 4: Reachability
	Slide 5: Transitive closure
	Slide 6: Transitive closure
	Slide 7: Transitive closure
	Slide 8: Transitive closure
	Slide 9: Tree cover
	Slide 10: Tree cover
	Slide 11: Tree cover
	Slide 12: Tree cover
	Slide 13: Tree cover
	Slide 14: Tree cover
	Slide 15: Tree cover
	Slide 16: Tree cover
	Slide 17: Tree cover
	Slide 18: Tree cover
	Slide 19: Implementation
	Slide 20: Q & A

