
Data Analytics for Graphs COMP9312_23T2

 1

Week 03 Tutorial

Advanced Graph Traversal

Aims

This exercise aims to get you to:

▪ Implement graph traversal algorithms (DFS, BFS, connectivity)

▪ Implement complex graph structures (directed, weighted)

▪ Use the disjoin set to generate the connected components for undirected graphs.

Exercise 1: Basic Graph Traversal

1. Program the breadth-first traversal algorithm for the graph in Figure 1 starting from A.

a. Traversal sequence example (not unique): A-B-C-E-D-F-G-H-I.

b. Please refer to the function BFS(G, v).

2. Program the depth-first traversal algorithm for the graph in Figure 1 starting from A.

a. Traversal sequence example (not unique): A-B-C-D-E-G-I-H-F.

b. Please refer to the function DFS(G, v).

 Figure 1

Data Analytics for Graphs COMP9312_23T2

 2

3. Load the graph in Figure 2 and check the connectivity between the following node pairs: (A, B), (A, C),

(A, D) and (A, E).

a. The answers: connected, unconnected, unconnected, connected.

b. Please refer to the function connectivity(G, u, v).

Figure 2

Exercise 2: Complex Graph Structures

1. Change the definition of class ‘SimpleGraph’ to ‘DirectedWeightedGraph’ by yourself. The new class

should support the load of directed weighted graphs and allows self-loop and multiple edges between

two vertices.

2. Load the directed weighted graph in Figure 3 using ‘DirectedWeightedGraph’.

3. Implement a function, in which when inputting any vertex v, it outputs the sum of the weights of all the

indegree edges of v. Please refer to the function sumIndegree(G, u).

a. Examples:

Input Output

A 1

C 0

E 12

G 1

Data Analytics for Graphs COMP9312_23T2

 3

Figure 3

Exercise 3: Connected Components

1. Load the graph in Figure 4 via the class ‘UndirectedGraph’ in ex_3&4.py.

2. The function connectComponents(G, method) in ex_3&4.py which inputs the graph in Figure 4 will

compute all the connected components.

3. Implement the class QuickFind in ex_3&4.py which use the attempt1 algorithm as illustrated in the

lecture slides.

4. Implement the class UnionFind that should use the disjoint set data structure for maximum efficiency

as illustrated in the lecture slides.

5. The output result should output the connected component each vertex belongs to and the total number

of connected components. Each connected component can be represented by any unique identifier,

e.g., the root vertex in the disjoint structure or the vertex’s sequence number in the ‘vertex_dict’ of

‘UndirectedGraph’.

Figure 4

Data Analytics for Graphs COMP9312_23T2

 4

Exercise 4: Efficiency On Medium Dataset

1. Use the dataset in the dataset_30k.txt which contains 30000 nodes and three components.

2. Download the dataset from github in colab using the command “!git clone

https://github.com/guaiyoui/COMP9312.git”. And use “!ls” to check if the download is successful.

3. If you are running code on your own machine, then make a new folder named “COMP9312” and put the

“dataset_30k.txt” into this folder.

4. Run the whole code and compare the running time of the two algorithms in Exercise 3..

https://github.com/guaiyoui/COMP9312.git

	Week 03 Tutorial
	Advanced Graph Traversal
	Aims
	This exercise aims to get you to:
	Exercise 1: Basic Graph Traversal
	Figure 2
	Exercise 2: Complex Graph Structures
	Figure 3
	Exercise 3: Connected Components
	Figure 4
	Exercise 4: Efficiency On Medium Dataset

