


Cljtline

K-core

K-truss

Other cohesive subgraph
Node features




Definition

« K-core is a maximal connected subgraph in which each vertex has at
least k neighbors in the subgraph




* Core decomposition

For each unvisited vertex u with the lowest degree
in G
assign core(u) as degree(u)
mark u as visited
decrease the degree of its unvisited
neighbors with higher degree than u by 1




« Time complexity analysis
« Iterate over all the vertices takes 0(n)
* Get the vertex with min degree in each iteration takes 0(n)
« Decrease degree of unvisited neighbors takes 0(m)
 Overall time complexity: 0(n? + m) = 0(n?)

Different way to get vertex with min degree in each iteration:

« Using heap: O(m *log(n))
« Using Fabonacci heap: 0(m + n = log(n))




Core decomposition using Flat array

Algorithm : CoreDecomposition .

NN U B W N -

o]

Input : G = (V,F):agraph

Output : {cn(u) | u € V'}: core number of every vertex in G

d(u) < deg(u, G) for every u € V; .

order the vertices in V' in increasing order of their degrees;

for each u € V' in the order do

en(u) < d(u);

for each v € N(u) with d(v) > d(u) do .
\' d(v) « d(v) — 1;

reorder V' accordingly; .

return cn(u) of every u € V

If the degree of neighbor vertex u
greater than degree of v, decrease the
degree of u by 1.

Line 7: swap the positions of u and the
first vertex with same degree as u's
original degree.

Because we use the bin sort, the time
complexity of reorder the array is O(n).
The total time complexity for core
decomposition is O(m).




1: function K-CORES(Graph G)

2 initialize(d, b, D, p, G)

3 for all 7 <1 ton do

4: v < DJi

5: for all u € Ng(v) do

6 if d[u] > d[v] then

7 du < d[u], pu < plu]

8: pw < b[du], w < D[pw]
9: if u # w then
10: D[pu| - w, Dpw] + u
11: plu| < pw, pw] + pu
12: end if
13: b[du]++, d[u]——
14: end if
15: end for
16: end for

17: return d
18: end function

Core decomposition using Flat array

In the implementation, we need

« D <- An array to sort vertices in non-decreasing
order of degree

« b <- An array to locate the start position for each
degree

« p <- An array to get the position of each vertex id

« d <- An array to maintain the degree of each vertex




. e . index d b D p
« Core decompOSItlon using Flat array 1 3 0 5 7
2 4 1 6 10
3 7 7 7 16
4 4 10 8 11
5 2 13 10 1
6 2 15 15 2
7T 2 16 1 3
8 2 9 4
9 3 13 8
10 2 2 5
11 5 4 13
12 6 14 15
13 3
14 4
15 2
16 5




- Exercise:
* |Implement KcoreDecomposition in tutorial_7.py
* Find the k-core for 1<=k<=3

Now, you have 15

minutes to do
Ex1.4.




« Definition
A maximal subgraph where each edge is contained in at least k-2

triangles in the subgraph, i.e., each edge has a support of at least k-2
in the subgraph.

Each k-truss of G is a subgraph of a (k-1)-core of G.

10




K-truss Computation

W =

Compute the (k-1)-core

Compute the support of each edge
Recursively delete each edge with support of less than k-2

Delete the isolated vertices

11 UN.TZ




« K-truss Computation




Cohesive Subgraph

« K-edge Connected Components
« K-vertex Connected Components
« Clique

4-Core: {G1UG2UG3UG4} 4-ECC: {G1UG2UG3, G4} 4-VCC: {G1, G2, G3, G4}

13

3-ECCs




eature Engineering

« Importance based features
* Node degree
« Different node centrality measures

« Structure-based features
* Node degree
» Clustering coefficient
* Graphlet count vector

14



eature Engineering

* Node Centrality: Clustering coefficient
measures how connected v's neighboring nodes are

#(edges among neighboring nodes)
v ()
2

Can be also understand as #triangles/#possible triangles

€ [0,1]

15 UN.sz




eature Engineering

» Graphlet Degree Vector
describe network structure around the node based on

g ra p h I et S 2-node 3-node graphlets 4-node graphlets
gr:phlet % 10 Y A
! %A A EI Y-

3 node graphlets

G G,
18 32 34 43
48
38 42 44 47
19 27 31 35 39 45

9 GlO Gll G12 G13 G14 GlS G16 Gl? G18 Gl9

5 - 57 ’. » 65 68 70
49 = ’. 71
50 51 54 56 59 66

GZO GZI G22 G23 G24 G25 GZG GZ7 G28 G29

16 UN.]TZ




eature Engineering

* Node Centrality: Eigenvector
Motivation: A node is important if surrounded by important
neighbors

Cu (it will turn out to be the largest
UEN (V) eigenvalue of A)

1 E A is normalization constant

17



eature Engineering

* Node Centrality: Betweenness
Motivation: A node is important if it lies on many shortest
paths between other nodes.

Z #(shortest paths betwen s and ¢t that contain v)
Cp, =

#(shortest paths between s and t)
SEVEL -

18



eature Engineering

* Node Centrality: Closeness
Motivation: A node is important if it has small shortest path
lengths to all other nodes

1
B Y=, Shortest path length between u and v

Cy

19 UN.]TZ




eature Engineering

- Exercise
« compute the clustering coefficients for nodes D and F

Now, you have 3

minutes to do
Ex2.2.

20 UN.TZ




eature Engineering

- Exercise
« compute the clustering coefficients for nodes D and F

Answer:
D: 0.3
F: 2/3

21



eature Engineering

 Exercise
« compute the graphlet degree vector for nodes B and G.

Now, you have 3

minutes to do
Ex2.3.

22



eature Engineering

 Exercise
« compute the graphlet degree vector for nodes B and G.
Answer:
B:[1,3,2]
G:[7,2,3]

1 2
23 UN.TZ




Q&A




