
UNSW COMP9312_23T21

Review:
Algorithms & Data Structures

UNSW COMP9312_23T22

OUTLINE
1. Balanced Binary Search Trees

2. Heap

3. Hash Table

4. Stack & Queue

5. Sorting Algorithms

UNSW COMP9312_23T23

Why Balanced Binary Search Tree?

To achieve O(𝐥𝐨𝐠𝒏) search efficiency, we need a Balanced BST

O(
n)

 co
m

pa
ris

on
s i

n
th

e
wo

rst
 ca

se 8

7

6

4

3

1

Unbalanced

Balanced Binary Search Tree

Binary Search Tree

UNSW COMP9312_23T24

Balanced Binary Search Tree
A Binary Search Tree in which each node is Balanced.

Balanced: The left and right subtrees differ in height by no more than 1.

Height: 3

A balanced binary tree.

Left subtree
Height: 2

Right subtree
Height: 1

Height: length of the
longest root-leaf path

UNSW COMP9312_23T25

Balanced Binary Search Trees
Motivation:
• Efficiently store and retrieve data while maintaining a balanced structure.
• Balanced trees ensure optimal performance for operations like insertion,

deletion, and searching.
Balanced Binary Search Trees:
• AVL trees
• Red-black trees

UNSW COMP9312_23T26

Balanced Binary Search Trees
Operation: Both AVL trees and red-black trees are not included in the standard
library of Python.

AVL Tree Red-Black Tree

Balancing Criteria Height-Balanced (strictly) Height-Balanced (relaxed)

Balancing Factor Balance factor (-1, 0, +1) Color (Red or Black)

Rotations More rotations due to strict
balancing

Fewer rotations due to relaxed
balancing

Insertion and Deletion Slower due to frequent
rotations Faster due to fewer rotations

Lookup/Searching Slightly faster due to better
height balance

Slightly slower due to relaxed
height balance

Applications When frequent searching is
expected

When frequent
insertion/deletion is expected

UNSW COMP9312_23T27

Heap (Priority Queue)
Motivation:
• Heaps provide efficient operations for insertion, deletion, and retrieval of the

highest (or lowest) priority element.
Operation: See heap.py

Time Complexity Average/Worst-case

Insertion O(log 𝑛)

Deletion O(log 𝑛)

Peek (max/min) O(1)

UNSW COMP9312_23T28

Hash Table
Motivation:
• Hash tables provide fast insertion, deletion, and lookup operations.
• They have constant time complexity on average.
Operation: See hash_table.py

Time Complexity Average Worst
(with collisions)

Insertion O(1) O(𝑛)

Deletion O(1) O(𝑛)

Lookup O(1) O(𝑛)

UNSW COMP9312_23T29

Hash Table
Limitation:
• Space Cost
• Hash Collisions
• Non-constant Time (worst-case)

Space vs Efficiency
Time Complexity Average Worst

(with collisions)
Insertion O(1) O(𝑛)
Deletion O(1) O(𝑛)
Lookup O(1) O(𝑛)

UNSW COMP9312_23T210

Stack
Motivation:
• Last-In-First-Out (LIFO)

Operation: See stack.py

Time Complexity:
• Constant O(1)

UNSW COMP9312_23T211

Queue
Motivation:
• First-In-First-Out (FIFO)

Operation: See queue.py

Time Complexity:
• Constant O(1)

UNSW COMP9312_23T212

Sorting Algorithms
Motivation:
• Sorting algorithms allow us to arrange elements in a particular order, making it

easier to search, analyze, and manipulate data.
Operation: The built-in ‘sorted()’ function and the ‘list.sort()’ method uses an
implementation of the Timsort algorithm.

Complexity Best (Time) Average (Time) Worst (Time) Worst (Space)

Bubble Sort O(𝑛) O(𝑛!) O(𝑛!) O(1)

Selection Sort O(𝑛!) O(𝑛!) O(𝑛!) O(1)

Insertion Sort O(𝑛) O(𝑛!) O(𝑛!) O(1)

Merge Sort O(𝑛 log 𝑛) O(𝑛 log 𝑛) O(𝑛 log 𝑛) O(𝑛)

Quick Sort O(𝑛 log 𝑛) O(𝑛 log 𝑛) O(𝑛!) O(log 𝑛)

Timsort O(𝑛) O(𝑛 log 𝑛) O(𝑛 log 𝑛) O(𝑛)

UNSW COMP9312_23T213

THANK YOU

