

OUTLINE

1.

Balanced Binary Search Trees

Heap

Hash Table

Stack & Queue

. Sorting Algorithms

2

alanced Binary Search Tree?

Binary Search Tree

$
&
§ }3’) Unbalanced

Balanced Binary Search Tree

To achieve O(log n) search efficiency, we need a Balanced BST

3 UN.sz

ed Binary Search Tree

A Binary Search Tree in which each node is Balanced.

Balanced: The left and right subtrees differ in height by no more than 1.
t

|

-« @ Height: length of the

: longest root-leaf path
JORN

Right subtree

& ®

|

|

|

; Left subtree
A4 @ @ Height: 2

4 UN.sz

A balanced binary tree.

ed Binary Search Trees

Motivation:
* Efficiently store and retrieve data while maintaining a balanced structure.

 Balanced trees ensure optimal performance for operations like insertion,
deletion, and searching.

Balanced Binary Search Trees:
e AVL trees
e Red-black trees

ed Binary Search Trees

Operation: Both AVL trees and red-black trees are not included in the standard

library of Python.
Balancing Criteria Height-Balanced (strictly) Height-Balanced (relaxed)
Balancing Factor Balance factor (-1, O, +1) Color (Red or Black)
. More rotations due to strict Fewer rotations due to relaxed
Rotations . ,
balancing balancing

Slower due to frequent

Insertion and Deletion Faster due to fewer rotations

rotations
. Slightly faster due to better Slightly slower due to relaxed
BT SR T height balance height balance
Applications When frequent searching is When frequent
PP expected insertion/deletion is expected

6 UN.sz

Motivation:

Priority Queue)

* Heaps provide efficient operations for insertion, deletion, and retrieval of the
highest (or lowest) priority element.

Operation: See heap.py

Lowest
key

(3<8) (3<10) (6<19) (6<18)

Min Heap
(Parent key is less than or equal
to (<) the child key)

Highest
key

(15>10) (15>12)

(10>3) (10>2) (12>1) (12> 6)

Max Heap
(Parent key is greater than or
equal to (2) the child key)

Insertion
Deletion

Peek (max/min)

O(logn)
O(logn)
O(1)

able

Motivation:

* Hash tables provide fast insertion, deletion, and lookup operations.
* They have constant time complexity on average.

Operation: See hash_table.py

Insertion O(1) O(n)
Deletion O(1) O(n)
Lookup 0(1) O(n)

Limitation:
* Space Cost
 Hash Collisions

 Non-constant Time (worst-case)

Insertion 0(1) O(n)
Deletion 0(1) O(n)
Lookup 0(1) O(n)

~

overflow
buckets entries
X
001 | Lisa Smith | 521-8976 |e
X
151 X
John Smith | 521-1234 | e-
— x !
— TR TR ™ x| SandraDee | 521-9655 |
X
X
254 SamDoe 521-5030 | e
255 X

Space vs Efficiency

Motivation:
* Last-In-First-Out (LIFO) Top=-q _TOP=0 TOP=1 TOP=2 TOP-1

stack[0] =1 stack[1]=2 stack[2] =3 return stack[2]

| 2N DY
Operation: See stack.py 1] =D
2 | 2 | 2 |
. . empty push push push pop
Time Complexity: stack

 Constant O(1)

10

Motivation:

* First-In-First-Out (FIFO)

Back Front
Operation: See queue.py Enquels IIIII Dequeue
Time Complexity: I

* Constant O(1)

11 UN.TZ

Motivation:

Algorithms

* Sorting algorithms allow us to arrange elements in a particular order, making it

easier to search, analyze, and manipulate data.

Operation: The built-in ‘sorted()’ function and the ‘list.sort()’ method uses an
implementation of the Timsort algorithm.

Bubble Sort
Selection Sort
Insertion Sort
Merge Sort
Quick Sort

Timsort

O(n)
0o(n?)
O(n)
O(nlogn)
O(nlogn)
O(n)

0O(n?)

0O(n?)

0O(n?)
O(nlogn)
O(nlogn)

O(nlogn)
12

0o(n?)
0o(n?)
0o(n?)
O(nlogn)
0(n?)
O(nlogn)

O(1)
0o(1)
O(1)
O(n)
O(logn)

