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Main idea

• Find a path between two vertices 𝑢 and 𝑣 where the sum of the weights 
of edges is minimized.
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• Single source shortest path:
• Dijkstra’s algorithm
• A* algorithm

• All pair shortest path:
• Floyd-Warshall algorithm
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Dijkstra’s algorithm
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• Implementation
Initialize an array of distances to infinity
Initialize an array of previous vertices
While still have unvisited vertex:

Find unvisited vertex 𝑣 that has a minimum distance
mark vertex 𝑣 as having been visited 
For every unvisited adjacent vertex 𝑤

if the distance[𝑣]+ weight of (𝑣, 𝑤) < distance[𝑤]:
update the shortest distance of 𝑤
record 𝑣 as the previous pointer
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Dijkstra’s algorithm
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• Complexity Analysis
• Initialization: 𝑂(|𝑉|)
• Iteration through the table: 𝑂(|𝑉|)
• For each iteration, we must check all the neighbors of vertex 𝑣
• With an adj matrix, the runtime is 𝑂( 𝑉 + |𝑉|)) = 𝑂( 𝑉 !)
• With an adj list, the runtime is 𝑂 𝑉 ! + 𝐸 = 𝑂( 𝑉 !) as 𝐸 =
𝑂( 𝑉 !)
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Dijkstra’s algorithm
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• Min-heap-based optimization
• Initialization: 𝑂(|𝑉|)
• For each iteration, find the unvisited closest vertex 𝑣 takes 𝑂 1 , 

maintain the heap 𝑂(𝑙𝑜𝑔 𝑉 ), so in total:  𝑂(|𝑉|𝑙𝑜𝑔 𝑉 )
• 𝑂(𝐸) updates on the shortest distance of all the neighbors, and each 

update in heap takes 𝑂(𝑙𝑜𝑔 𝑉 ), so in total:  𝑂(|𝐸|𝑙𝑜𝑔 𝑉 )
• Thus, the total runtime is 𝑂(|𝐸|𝑙𝑜𝑔 𝑉 )
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Dijkstra’s algorithm
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• Exercise: 
• In the example graph G, find the shortest path of
• <A,H>
• <C, I>

Now, you have 3 
minutes to do 
Ex1.2.
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• Requirement:
The distance satisfy the triangle inequality, that is, the distance between 
a and b is less than the distance from a to c plus the distance from c to 
b.

• Admissible Heuristics h
• ℎ 𝑢, 𝑣 ≤ 𝑑(𝑢, 𝑣)
• The heuristic is optimistic or lower 

bound on the distance
When the heuristic is admissible, then it 
is guaranteed to return the shortest path.
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A* algorithm
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• Implementation:
Mark each vertex as unvisited
Starts with an array containing only the initial vertex

The value of any vertex 𝑣 in the array is the weight 𝑤(𝑣)
While not reach destination vertex 𝑧

get the vertex 𝑢 with the least weight
mark the vertex 𝑢 as visited
For each unvisited adjacent vertex 𝑣

If 𝑤 𝑣 = 𝑑 𝑎, 𝑢 + 𝑑 𝑢, 𝑣 + ℎ(𝑣, 𝑧) is less than the current 𝑤 𝑣
update the path and weight of 𝑣
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Heuristic:

• Find the shortest path from S to T
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A* algorithm
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Heuristic:

• Find the shortest path from S to T
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• Implementation
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Floyd Warshall algorithm
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• Initialization
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Floyd Warshall algorithm
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• Shortest distance
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Floyd Warshall algorithm
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• Shortest path
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Floyd Warshall algorithm
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• Exercise
Find the shortest distance of all pair of vertices in the example graph G

Now, you have 5 
minutes to do 
Ex1.4.
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• Definition
Two graphs G and H are homomorphic if there exists a function 
function 𝑓: 𝑉. → 𝑉/ between vertices of the graph such that if 𝑎, 𝑏 is 
an edge in G then {𝑓 𝑎 , 𝑓(𝑏)} is an edge in H.

Two graphs G and H are isomorphic if there exists a bijective function 
𝑓: 𝑉. → 𝑉/ between vertices of the graph such that if 𝑎, 𝑏 is an edge in G 
then {𝑓 𝑎 , 𝑓(𝑏)} is an edge in H.
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• Exercise
Are the graphs in Figure 1 and Figure 2 isomorphic? If so, demonstrate 
an isomorphism between the set of vertices. 

Now, you have 5 
minutes to do 
Ex2.2.
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• Implementation
• Priority: determined by degree
• Orientation technique: Map undirected edge into directed edge. The direction is 

decided by the priority of the endpoint in the vertex-ordering, i.e., u->v if u has a 
higher priority than v.
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Triangle Counting
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• Implementation
• Compact Forward (CF) algorithm
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Triangle Counting
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• Exercise
• List all the triangles in the example graph G
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Triangle Counting
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• Complexity analysis
We need to check common neighbors in the adj list. 
• If the adj list is sorted, the time complexity of CF algorithm is: 

𝑂 ∑ !,# ∈% 𝑑𝑒𝑔& 𝑢 ∗ 𝑑𝑒𝑔& 𝑣
• If the adj list is sorted, the time complexity of CF algorithm is: 

𝑂 ∑ !,# ∈% 𝑑𝑒𝑔& 𝑢 + 𝑑𝑒𝑔& 𝑣
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• Complexity analysis
• Suppose a hash table has been built for each vertex based on the out-going 

neighbors in the oriented graph. We can choose the vertex with larger number of 
neighbors as the hash table for intersection with 𝑂 min(𝑑𝑒𝑔& 𝑢 , 𝑑𝑒𝑔& 𝑣 ) cost.

The complexity of CF algorithm: 𝑂 ∑ !,# ∈% min(𝑑𝑒𝑔& 𝑢 , 𝑑𝑒𝑔& 𝑣 ) =
𝑂 ∑ !,# ∈% min(𝑑𝑒𝑔 𝑢 , 𝑑𝑒𝑔 𝑣 ) = 𝑂 𝛼 ⋅ 𝑚 = 𝑂(𝑚')
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• Complexity analysis
• Build a hash table for each vertex requires large space cost for big graphs. We can 

build a hash table on the fly.

The complexity of CF algorithm: 𝑂 ∑ !,# ∈%! 𝑑𝑒𝑔& (𝑣) = 𝑂 ∑ !,# ∈%! 𝑑𝑒𝑔(𝑣) =
𝑂 ∑ !,# ∈%min(deg 𝑢 , deg(𝑣)) = 𝑂 𝛼 ⋅ 𝑚 = 𝑂(𝑚(.*)
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• Exercise
• Load the graph via class ‘SimpleGraph’ in tutorial_6.py
• Implement CF algorithm to list all the triangles in the graph G

Now, you have 15 
minutes to do 
Ex2.5.
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