


Cljtline

» Shortest Path

« Subgraph Matching




st Path

Main idea

* Find a path between two vertices u and v where the sum of the weights
of edges is minimized.




st Path

 Single source shortest path:
 Dijkstra’s algorithm
« A* algorithm

* All pair shortest path:
« Floyd-Warshall algorithm




a’s algorithm

* Implementation
Initialize an array of distances to infinity
Initialize an array of previous vertices
While still have unvisited vertex:
Find unvisited vertex v that has a minimum distance
mark vertex v as having been visited
For every unvisited adjacent vertex w
if the distance[v]+ weight of (v, w) < distance[w]:
update the shortest distance of w
record v as the previous pointer
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a’s algorithm
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a’s algorithm

« Complexity Analysis
« [|nitialization: O(|V])
* [teration through the table: O(|V])
« For each iteration, we must check all the neighbors of vertex v
 With an adj matrix, the runtime is 0(|V| + |V])) = 0(|V|?)
» With an adj list, the runtime is O(|[V|? + |E|) = 0(|V|?) as |E| =
4R




a’s algorithm

* Min-heap-based optimization
« [nitialization: O(|V])
« For each iteration, find the unvisited closest vertex v takes 0(1),
maintain the heap 0(log(|V])), so intotal: O(|V|log(|V|))
« O(E) updates on the shortest distance of all the neighbors, and each
update in heap takes O(log(|V|)), so in total: O(|E|log(|V]))
« Thus, the total runtime is O(|E|log(|V]))




 Exercise:

a’s algorithm

* |nthe example graph G, find the shortest path of

« <AH>
« <G, I>

Now, you have 3

minutes to do
Ex1.2.
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rithm

* Requirement:
The distance satisfy the triangle inequality, that is, the distance between
a and b is less than the distance from a to c plus the distance from c to

b.
 Admissible Heuristics h ©
 h(u,v) <d(u,v)
* The heuristic is optimistic or lower ?)
bound on the distance 2

When the heuristic is admissible, then it
is guaranteed to return the shortest path.
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rithm

* Implementation:
Mark each vertex as unvisited
Starts with an array containing only the initial vertex
The value of any vertex v in the array is the weight w(v)
While not reach destination vertex z
get the vertex u with the least weight
mark the vertex u as visited
For each unvisited adjacent vertex v
If w(v) =d(a,u) + d(u,v) + h(v, z) is less than the current w(v)
update the path and weight of v
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A=(0,3)
B=(0,1)
c=(1,1)
D =(1,0)
E=(3,0)
S = (0, 0)
T=(3,3)

Heuristic: d(u,v) = \/(ux — x)2+(uy - uy)z
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* Find the shortest pathfromSto T
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* Find the shortest pathfromSto T

A= (0' 3) Vertex Visited Distance Heuristic  Total Previous
B=(0,1) A F 3 3 6 B
C=(1,1) B T 1 V13 1+V/13 S
D =(1,0) C T 3.1 V2 |31+242| B
E=(3,0) D T 1 V13 1+V13 S
_ E F 3 3 6 D
.?. _ Eg' g; S T 0 3v2 3V?2 o
' T T 3.142v/2 0 3.14+2v/2 C

Heuristic: d(u,v) = \/(ux — x)2+(uy - uy)z
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arshall algorithm

* Implementation

double d[num_vertices][num_vertices];

// Initialize the matrix d: Theta(|V|~2)
//

// Run Floyd-Warshall
for ( int k = @; k < num_vertices; ++k ) {
for ( int i = @; i < num_vertices; ++i ) {
for ( int j = 0; j < num_vertices; ++j ) {

d[i][3j] = min( d[i][]], d[i][k] + d[k][3] );
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arshall algorithm

& 7 \\O‘ + Initialization

(0 0.100 0.101 0.142 0.277)
0.465 0 0.191 0.192 0.587
0.245 0.554 0 0.333 0.931
1.032 0.668 0.656 0 0.151
|0.867 0.119 0352 0398 0
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arshall algorithm
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« Shortest distance
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arshall algorithm

* Shortest path

unsigned int p[num_vertices][num_vertices];

// Initialize the matrix p: O0(|V|[~2)
//

// Run Floyd-Warshall
for ( int k = @; k < num_vertices; ++k ) {
for ( int i = @; i < num_vertices; ++i ) {
for ( int j = @; j < num_vertices; ++j ) {
if ( d[i][]] > d[i][k] + d[k][J] ) {
p[i][J] = p[i][k];
d[i][j] = d[i][k] + d[k][J];

}
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Exercise

arshall algorithm

Find the shortest distance of all pair of vertices in the example graph G
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4 Now, you have 5
}D minutes to do
5 Ex1.4.




Homomorphism

 Definition
Two graphs G and H are homomorphic if there exists a function
function f:V; — Vy between vertices of the graph such that if {a, b} is
an edge in G then {f(a), f(b)} is an edge in H.

Two graphs G and H are isomorphic if there exists a bijective function
f:V; » Vy between vertices of the graph such that if {a, b} is an edge in G
then {f(a), f(b)} is an edge in H.
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Homomorphism

- Exercise
Are the graphs in Figure 1 and Figure 2 isomorphic? If so, demonstrate
an isomorphism between the set of vertices.

Now, you have 5

minutes to do
Ex2.2.

Figure 1 Figure 2

21



e Counting

* Implementation
 Priority: determined by degree
 Orientation technique: Map undirected edge into directed edge. The direction is
decided by the priority of the endpoint in the vertex-ordering, i.e., u->v if u has a
higher priority than v.
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e Counting

* Implementation
« Compact Forward (CF) algorithm

Algorithm 1: CF(G)
Input : G : an undirected graph
Output : All triangles in G
G + Orientation graph of GG based on degree-order;
for each vertex u € G do
for each out-going neighbor v do

T+ Nt(u)NnN*t(v);

for each vertex w € T" do

L Output the triangle (u, v, w);

(=T =L B U SR
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e Counting

* Exercise
 List all the triangles in the example graph G

(i@% jo
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e Counting

« Complexity analysis
We need to check common neighbors in the adj list.
« If the adj list is sorted, the time complexity of CF algorithm is:

0(Zuryer deg® W) * deg* (v)
« If the adj list is sorted, the time complexity of CF algorithm is:

0(Z (uvyer deg (W) + deg* (1))
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e Counting

« Complexity analysis
« Suppose a hash table has been built for each vertex based on the out-going
neighbors in the oriented graph. We can choose the vertex with larger number of
neighbors as the hash table for intersection with O (min(deg*(u), deg™ (v))) cost.

The complexity of CF algorithm: 0(X,, ,yez min(deg™(u), deg*(v))) =
O0(Z@wvyer min(deg(w),deg(v))) = 0(a -m) = 0(m*)
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e Counting

« Complexity analysis
« Build a hash table for each vertex requires large space cost for big graphs. We can
build a hash table on the fly.

The complexity of CF algorithm: O(Z(u,v)EE’ deg* (v)) = O(Z(u,v)EE’ deg(v)) =
O(Z(u,U)EE mln(deg(u) ) deg(v)) ) = 0(6{ . m) = O(ml-s)




e Counting

- Exercise
» Load the graph via class ‘SimpleGraph’ in tutorial_6.py
« Implement CF algorithm to list all the triangles in the graph G

Q %f\ } Now, you have 15

4 minutes to do
‘ % @% )D ExI2.5.
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