COMP9312 Shortest Path and Subgraph Matching

Outline

• Shortest Path

Subgraph Matching

Shortest Path

Main idea

• Find a path between two vertices *u* and *v* where the sum of the weights of edges is minimized.

Shortest Path

• Single source shortest path:

- Dijkstra's algorithm
- A* algorithm
- All pair shortest path:
 - Floyd-Warshall algorithm

Implementation

Initialize an array of distances to infinity Initialize an array of previous vertices While still have unvisited vertex:

Find unvisited vertex v that has a minimum distance mark vertex v as having been visited For every unvisited adjacent vertex wif the distance[v]+ weight of (v, w) < distance[w]: update the shortest distance of wrecord v as the previous pointer

Vertex	Visited	Distance	Previous
Α	F	∞	Ø
В	F	∞	Ø
С	F	œ	Ø
D	F	∞	Ø
E	F	œ	Ø
F	F	00	Ø
G	F	∞	Ø
Н	F	00	Ø
I	F	∞	Ø
J	F	∞	Ø
K	F	0	Ø
L	F	00	Ø

Vertex	Visited	Distance	Previous
Α	Т	39	В
В	Т	19	E
С	Т	15	E
D	Т	24	E
E	Т	14	Н
F	Т	17	G
G	Т	13	
Н	Т	8	K
	Т	10	Н
J	Т	17	K
K	Т	0	Ø
L	Т	16	K

- Complexity Analysis
 - Initialization: O(|V|)
 - Iteration through the table: O(|V|)
 - For each iteration, we must check all the neighbors of vertex v
 - With an adj matrix, the runtime is $O(|V| + |V|) = O(|V|^2)$
 - With an adj list, the runtime is $O(|V|^2 + |E|) = O(|V|^2)$ as $|E| = O(|V|^2)$

- Min-heap-based optimization
 - Initialization: O(|V|)
 - For each iteration, find the unvisited closest vertex v takes O(1), maintain the heap O(log(|V|)), so in total: O(|V|log(|V|))
 - O(E) updates on the shortest distance of all the neighbors, and each update in heap takes O(log(|V|)), so in total: O(|E|log(|V|))
 - Thus, the total runtime is O(|E|log(|V|))

- Exercise:
 - In the example graph G, find the shortest path of
 - <A,H>
 - <C, |>

Now, you have 3 minutes to do Ex1.2.

• Requirement:

The distance satisfy the triangle inequality, that is, the distance between a and b is less than the distance from a to c plus the distance from c to b.

- Admissible Heuristics h
 - $h(u,v) \leq d(u,v)$
 - The heuristic is optimistic or lower bound on the distance

When the heuristic is admissible, then it

is guaranteed to return the shortest path.

A* algorithm

• Implementation:

Mark each vertex as unvisited

Starts with an array containing only the initial vertex

The value of any vertex v in the array is the weight w(v)

While not reach destination vertex z

get the vertex *u* with the least weight

mark the vertex u as visited

For each unvisited adjacent vertex v

If w(v) = d(a, u) + d(u, v) + h(v, z) is less than the current w(v)

update the path and weight of v

A* algorithm

Heuristic:
$$d(u, v) = \sqrt{(u_x - v_x)^2 + (u_y - u_y)^2}$$

• Find the shortest path from S to T

Vertex	Visited	Distance	Heuristic	Total	Previous
Α	F	00	3	∞	Ø
В	F	∞	√13	∞	Ø
С	F	∞	2√2	∞	Ø
D	F	∞	√13	∞	Ø
Е	F	∞	3	∞	Ø
S	Т	0	3√2	3√2	Ø
Т	F	∞	0	∞	Ø

A* algorithm

Heuristic:
$$d(u, v) = \sqrt{(u_x - v_x)^2 + (u_y - u_y)^2}$$

• Find the shortest path from S to T

Vertex	Visited	Distance	Heuristic	Total	Previous
Α	F	3	3	6	В
В	Т	1	√13	1+√13	S
С	Т	3.1	2√2	3.1+2√2	В
D	Т	1	√13	1+√13	S
E	F	3	3	6	D
S	Т	0	3√2	3√2	Ø
Т	Т	3.1+2√2	0	3.1+2√2	С

Implementation

double d[num_vertices][num_vertices];

• Initialization

(0	0.100	0.101	0.142	0.277
0.465	0	0.191	0.192	0.587
0.245	0.554	0	0.333	0.931
1.032	0.668	0.656	0	0.151
0.867	0.119	0.352	0.398	0)

Shortest distance

(0	0.100	0.101	0.142	0.277
0.436	0	0.191	0.192	0.343
0.245	0.345	0	0.333	0.484
0.706	0.270	0.461	0	0.151
0.555	0.119	0.310	0.311	0)

Shortest path

unsigned int p[num_vertices][num_vertices];

```
// Initialize the matrix p: O(|V|^2)
// ...
```

```
// Run Floyd-Warshall
for ( int k = 0; k < num_vertices; ++k ) {
    for ( int i = 0; i < num_vertices; ++i ) {
        for ( int j = 0; j < num_vertices; ++j ) {
            if ( d[i][j] > d[i][k] + d[k][j] ) {
                p[i][j] = p[i][k];
                d[i][j] = d[i][k] + d[k][j];
            }
        }
     }
}
```


• Exercise

Find the shortest distance of all pair of vertices in the example graph G

Now, you have 5 minutes to do Ex1.4.

Graph Homomorphism

• Definition

Two graphs G and H are homomorphic if there exists a function function $f: V_G \rightarrow V_H$ between vertices of the graph such that if $\{a, b\}$ is an edge in G then $\{f(a), f(b)\}$ is an edge in H.

Two graphs G and H are isomorphic if there exists a **bijective** function $f: V_G \rightarrow V_H$ between vertices of the graph such that if $\{a, b\}$ is an edge in G then $\{f(a), f(b)\}$ is an edge in H.

Graph Homomorphism

• Exercise

Are the graphs in Figure 1 and Figure 2 isomorphic? If so, demonstrate an isomorphism between the set of vertices.

Now, you have 5 minutes to do Ex2.2.

Figure 1

(3)

(4

Implementation

- Priority: determined by degree
- Orientation technique: Map undirected edge into directed edge. The direction is decided by the priority of the endpoint in the vertex-ordering, i.e., u->v if u has a higher priority than v.

Implementation

• Compact Forward (CF) algorithm

Algorithm 1: CF(G)

Input : G : an undirected graph Output : All triangles in G 1 $G \leftarrow$ Orientation graph of G based on degree-order; 2 for each vertex $u \in G$ do 3 for each out-going neighbor v do 4 $T \leftarrow N^+(u) \cap N^+(v)$; 5 for each vertex $w \in T$ do 6 Output the triangle (u, v, w);

• Exercise

• List all the triangles in the example graph G

Complexity analysis

We need to check common neighbors in the adj list.

- If the adj list is sorted, the time complexity of CF algorithm is: $O(\sum_{(u,v)\in E} deg^+(u) * deg^+(v))$
- If the adj list is sorted, the time complexity of CF algorithm is: $O(\sum_{(u,v)\in E} deg^+(u) + deg^+(v))$

- Complexity analysis
 - Suppose a hash table has been built for each vertex based on the out-going neighbors in the oriented graph. We can choose the vertex with larger number of neighbors as the hash table for intersection with O(min(deg⁺(u), deg⁺(v))) cost.

The complexity of CF algorithm: $O(\sum_{(u,v)\in E} \min(deg^+(u), deg^+(v))) = O(\sum_{(u,v)\in E} \min(deg(u), deg(v))) = O(\alpha \cdot m) = O(m^3)$

- Complexity analysis
 - Build a hash table for each vertex requires large space cost for big graphs. We can build a hash table on the fly.

The complexity of CF algorithm: $O(\sum_{(u,v)\in E'} deg^+(v)) = O(\sum_{(u,v)\in E'} deg(v)) = O(\sum_{(u,v)\in E} \min(deg(u), deg(v))) = O(\alpha \cdot m) = O(m^{1.5})$

- Exercise
 - Load the graph via class 'SimpleGraph' in tutorial_6.py
 - Implement CF algorithm to list all the triangles in the graph G

Now, you have 15 minutes to do Ex2.5.

Q & A

