
UNSW COMP9312_23T2

COMP9312 Shortest Path
and Subgraph Matching

UNSW COMP9312_23T22

Outline

• Shortest Path

• Subgraph Matching

UNSW COMP9312_23T2

Shortest Path

3

Main idea

• Find a path between two vertices 𝑢 and 𝑣 where the sum of the weights
of edges is minimized.

UNSW COMP9312_23T2

Shortest Path

4

• Single source shortest path:
• Dijkstra’s algorithm
• A* algorithm

• All pair shortest path:
• Floyd-Warshall algorithm

UNSW COMP9312_23T2

Dijkstra’s algorithm

5

• Implementation
Initialize an array of distances to infinity
Initialize an array of previous vertices
While still have unvisited vertex:

Find unvisited vertex 𝑣 that has a minimum distance
mark vertex 𝑣 as having been visited
For every unvisited adjacent vertex 𝑤

if the distance[𝑣]+ weight of (𝑣, 𝑤) < distance[𝑤]:
update the shortest distance of 𝑤
record 𝑣 as the previous pointer

UNSW COMP9312_23T2

Dijkstra’s algorithm

6

UNSW COMP9312_23T2

Dijkstra’s algorithm

7

UNSW COMP9312_23T2

Dijkstra’s algorithm

8

• Complexity Analysis
• Initialization: 𝑂(|𝑉|)
• Iteration through the table: 𝑂(|𝑉|)
• For each iteration, we must check all the neighbors of vertex 𝑣
• With an adj matrix, the runtime is 𝑂(𝑉 + |𝑉|)) = 𝑂(𝑉 !)
• With an adj list, the runtime is 𝑂 𝑉 ! + 𝐸 = 𝑂(𝑉 !) as 𝐸 =
𝑂(𝑉 !)

UNSW COMP9312_23T2

Dijkstra’s algorithm

9

• Min-heap-based optimization
• Initialization: 𝑂(|𝑉|)
• For each iteration, find the unvisited closest vertex 𝑣 takes 𝑂 1 ,

maintain the heap 𝑂(𝑙𝑜𝑔 𝑉), so in total: 𝑂(|𝑉|𝑙𝑜𝑔 𝑉)
• 𝑂(𝐸) updates on the shortest distance of all the neighbors, and each

update in heap takes 𝑂(𝑙𝑜𝑔 𝑉), so in total: 𝑂(|𝐸|𝑙𝑜𝑔 𝑉)
• Thus, the total runtime is 𝑂(|𝐸|𝑙𝑜𝑔 𝑉)

UNSW COMP9312_23T2

Dijkstra’s algorithm

10

• Exercise:
• In the example graph G, find the shortest path of
• <A,H>
• <C, I>

Now, you have 3
minutes to do
Ex1.2.

UNSW COMP9312_23T2

A* algorithm

11

• Requirement:
The distance satisfy the triangle inequality, that is, the distance between
a and b is less than the distance from a to c plus the distance from c to
b.

• Admissible Heuristics h
• ℎ 𝑢, 𝑣 ≤ 𝑑(𝑢, 𝑣)
• The heuristic is optimistic or lower

bound on the distance
When the heuristic is admissible, then it
is guaranteed to return the shortest path.

UNSW COMP9312_23T2

A* algorithm

12

• Implementation:
Mark each vertex as unvisited
Starts with an array containing only the initial vertex

The value of any vertex 𝑣 in the array is the weight 𝑤(𝑣)
While not reach destination vertex 𝑧

get the vertex 𝑢 with the least weight
mark the vertex 𝑢 as visited
For each unvisited adjacent vertex 𝑣

If 𝑤 𝑣 = 𝑑 𝑎, 𝑢 + 𝑑 𝑢, 𝑣 + ℎ(𝑣, 𝑧) is less than the current 𝑤 𝑣
update the path and weight of 𝑣

UNSW COMP9312_23T2

A* algorithm

13

Heuristic:

• Find the shortest path from S to T

UNSW COMP9312_23T2

A* algorithm

14

Heuristic:

• Find the shortest path from S to T

UNSW COMP9312_23T2

Floyd Warshall algorithm

15

• Implementation

UNSW COMP9312_23T2

Floyd Warshall algorithm

16

• Initialization

UNSW COMP9312_23T2

Floyd Warshall algorithm

17

• Shortest distance

UNSW COMP9312_23T2

Floyd Warshall algorithm

18

• Shortest path

UNSW COMP9312_23T2

Floyd Warshall algorithm

19

• Exercise
Find the shortest distance of all pair of vertices in the example graph G

Now, you have 5
minutes to do
Ex1.4.

UNSW COMP9312_23T2

Graph Homomorphism

20

• Definition
Two graphs G and H are homomorphic if there exists a function
function 𝑓: 𝑉. → 𝑉/ between vertices of the graph such that if 𝑎, 𝑏 is
an edge in G then {𝑓 𝑎 , 𝑓(𝑏)} is an edge in H.

Two graphs G and H are isomorphic if there exists a bijective function
𝑓: 𝑉. → 𝑉/ between vertices of the graph such that if 𝑎, 𝑏 is an edge in G
then {𝑓 𝑎 , 𝑓(𝑏)} is an edge in H.

UNSW COMP9312_23T2

Graph Homomorphism

21

• Exercise
Are the graphs in Figure 1 and Figure 2 isomorphic? If so, demonstrate
an isomorphism between the set of vertices.

Now, you have 5
minutes to do
Ex2.2.

UNSW COMP9312_23T2

Triangle Counting

22

• Implementation
• Priority: determined by degree
• Orientation technique: Map undirected edge into directed edge. The direction is

decided by the priority of the endpoint in the vertex-ordering, i.e., u->v if u has a
higher priority than v.

UNSW COMP9312_23T2

Triangle Counting

23

• Implementation
• Compact Forward (CF) algorithm

UNSW COMP9312_23T2

Triangle Counting

24

• Exercise
• List all the triangles in the example graph G

UNSW COMP9312_23T2

Triangle Counting

25

• Complexity analysis
We need to check common neighbors in the adj list.
• If the adj list is sorted, the time complexity of CF algorithm is:

𝑂 ∑ !,# ∈% 𝑑𝑒𝑔& 𝑢 ∗ 𝑑𝑒𝑔& 𝑣
• If the adj list is sorted, the time complexity of CF algorithm is:

𝑂 ∑ !,# ∈% 𝑑𝑒𝑔& 𝑢 + 𝑑𝑒𝑔& 𝑣

UNSW COMP9312_23T2

Triangle Counting

26

• Complexity analysis
• Suppose a hash table has been built for each vertex based on the out-going

neighbors in the oriented graph. We can choose the vertex with larger number of
neighbors as the hash table for intersection with 𝑂 min(𝑑𝑒𝑔& 𝑢 , 𝑑𝑒𝑔& 𝑣) cost.

The complexity of CF algorithm: 𝑂 ∑ !,# ∈% min(𝑑𝑒𝑔& 𝑢 , 𝑑𝑒𝑔& 𝑣) =
𝑂 ∑ !,# ∈% min(𝑑𝑒𝑔 𝑢 , 𝑑𝑒𝑔 𝑣) = 𝑂 𝛼 ⋅ 𝑚 = 𝑂(𝑚')

UNSW COMP9312_23T2

Triangle Counting

27

• Complexity analysis
• Build a hash table for each vertex requires large space cost for big graphs. We can

build a hash table on the fly.

The complexity of CF algorithm: 𝑂 ∑ !,# ∈%! 𝑑𝑒𝑔& (𝑣) = 𝑂 ∑ !,# ∈%! 𝑑𝑒𝑔(𝑣) =
𝑂 ∑ !,# ∈%min(deg 𝑢 , deg(𝑣)) = 𝑂 𝛼 ⋅ 𝑚 = 𝑂(𝑚(.*)

UNSW COMP9312_23T2

Triangle Counting

28

• Exercise
• Load the graph via class ‘SimpleGraph’ in tutorial_6.py
• Implement CF algorithm to list all the triangles in the graph G

Now, you have 15
minutes to do
Ex2.5.

UNSW COMP9312_23T2

Q & A

29

