

Cljtline

» Shortest Path

« Subgraph Matching

st Path

Main idea

* Find a path between two vertices u and v where the sum of the weights
of edges is minimized.

st Path

 Single source shortest path:
 Dijkstra’s algorithm
« A* algorithm

* All pair shortest path:
« Floyd-Warshall algorithm

a’s algorithm

* Implementation
Initialize an array of distances to infinity
Initialize an array of previous vertices
While still have unvisited vertex:
Find unvisited vertex v that has a minimum distance
mark vertex v as having been visited
For every unvisited adjacent vertex w
if the distance[v]+ weight of (v, w) < distance[w]:
update the shortest distance of w
record v as the previous pointer

%)
%)
%)

Vertex Visited Distance Previous
F
F
F
F

QA

8 8 8

Wy Ny

QA

8 8 8 © 8

| Ny N WAy N Sy ¥ Sy ¥

<O NQOWWLOI—"HX 1
N < el
= N
m / m/,l/ll MH\
- © 0
._“. 3\ ﬂ\ /6
S \\ b, I
O 0 -
<) \ N !
— | N 2
g0 vr\ - /B
w /m/ \\m\
O O &
/m
By

a’s algorithm

/‘J\ Vertex Visited Distance Previous
19 \ A T 39 B
/ 18 T 19 E
—K / \K C T 15 E
F~ \3\|/12’ D T 24 E
/\ vy | 8/ E T 14 H
2 F T 17 G
AR YR \I|_/ g G T 13 |
/ \ Vi H T 8 K
D—_ 6 e | T 10 H
P -4 J T 17 K
21 13 ‘1 K T 0 %]
/ \/5 \ L T 16 K

A—20—B—7—C

a’s algorithm

« Complexity Analysis
« [|nitialization: O(|V])
* [teration through the table: O(|V])
« For each iteration, we must check all the neighbors of vertex v
 With an adj matrix, the runtime is 0(|V| + |V])) = 0(|V|?)
» With an adj list, the runtime is O(|[V|? + |E|) = 0(|V|?) as |E| =
4R

a’s algorithm

* Min-heap-based optimization
« [nitialization: O(|V])
« For each iteration, find the unvisited closest vertex v takes 0(1),
maintain the heap 0(log(|V])), so intotal: O(|V|log(|V|))
« O(E) updates on the shortest distance of all the neighbors, and each
update in heap takes O(log(|V|)), so in total: O(|E|log(|V]))
« Thus, the total runtime is O(|E|log(|V]))

 Exercise:

a’s algorithm

* |nthe example graph G, find the shortest path of

« <AH>
« <G, I>

Now, you have 3

minutes to do
Ex1.2.

«i@%

10

rithm

* Requirement:
The distance satisfy the triangle inequality, that is, the distance between
a and b is less than the distance from a to c plus the distance from c to

b.
 Admissible Heuristics h ©
 h(u,v) <d(u,v)
* The heuristic is optimistic or lower ?)
bound on the distance 2

When the heuristic is admissible, then it
is guaranteed to return the shortest path.

11 UN.]TZ

rithm

* Implementation:
Mark each vertex as unvisited
Starts with an array containing only the initial vertex
The value of any vertex v in the array is the weight w(v)
While not reach destination vertex z
get the vertex u with the least weight
mark the vertex u as visited
For each unvisited adjacent vertex v
If w(v) =d(a,u) + d(u,v) + h(v, z) is less than the current w(v)
update the path and weight of v

12

A=(0,3)
B=(0,1)
c=(1,1)
D =(1,0)
E=(3,0)
S = (0, 0)
T=(3,3)

Heuristic: d(u,v) = \/(ux — x)2+(uy - uy)z

13

* Find the shortest pathfromSto T

Vertex Visited Distance Heuristic Total Previous

S onomoOoO W >

F

M < T M M m

00

8 ©8 8 8 8

3
V13
24/2
V13
3
3v/2
0

Qo

8 <.8 8 8 8 8

* Find the shortest pathfromSto T

A= (0' 3) Vertex Visited Distance Heuristic Total Previous
B=(0,1) A F 3 3 6 B
C=(1,1) B T 1 V13 1+V/13 S
D =(1,0) C T 3.1 V2 |31+242| B
E=(3,0) D T 1 V13 1+V13 S
_ E F 3 3 6 D
.?. _ Eg' g; S T 0 3v2 3V?2 o
' T T 3.142v/2 0 3.14+2v/2 C

Heuristic: d(u,v) = \/(ux — x)2+(uy - uy)z

14 UN.TZ

arshall algorithm

* Implementation

double d[num_vertices][num_vertices];

// Initialize the matrix d: Theta(|V|~2)
//

// Run Floyd-Warshall
for (int k = @; k < num_vertices; ++k) {
for (int i = @; i < num_vertices; ++i) {
for (int j = 0; j < num_vertices; ++j) {

d[i][3j] = min(d[i][]], d[i][k] + d[k][3]);

15 UN.TZ

}

arshall algorithm

& 7 \\O‘ + Initialization

(0 0.100 0.101 0.142 0.277)
0.465 0 0.191 0.192 0.587
0.245 0.554 0 0.333 0.931
1.032 0.668 0.656 0 0.151
|0.867 0.119 0352 0398 0

16

arshall algorithm

17

« Shortest distance

(0

0.436
0.245
0.706
L0.555

0.100
0

0.345
0.270
0.119

0.101
0.191
0

0.461
0.310

0.142
0.192
0.333

0.311

0.277"
0.343
0.484
0.151

arshall algorithm

* Shortest path

unsigned int p[num_vertices][num_vertices];

// Initialize the matrix p: O0(|V|[~2)
//

// Run Floyd-Warshall
for (int k = @; k < num_vertices; ++k) {
for (int i = @; i < num_vertices; ++i) {
for (int j = @; j < num_vertices; ++j) {
if (d[i][]] > d[i][k] + d[k][J]) {
p[i][J] = p[i][k];
d[i][j] = d[i][k] + d[k][J];

}

18

Exercise

arshall algorithm

Find the shortest distance of all pair of vertices in the example graph G

6

2

A
4
@

8

5

s— (&)
2

T\

oL

3

S 4
1

L
7
6
0 H

19

4 Now, you have 5
}D minutes to do
5 Ex1.4.

Homomorphism

 Definition
Two graphs G and H are homomorphic if there exists a function
function f:V; — Vy between vertices of the graph such that if {a, b} is
an edge in G then {f(a), f(b)} is an edge in H.

Two graphs G and H are isomorphic if there exists a bijective function
f:V; » Vy between vertices of the graph such that if {a, b} is an edge in G
then {f(a), f(b)} is an edge in H.

20 UN.]TZ

Homomorphism

- Exercise
Are the graphs in Figure 1 and Figure 2 isomorphic? If so, demonstrate
an isomorphism between the set of vertices.

Now, you have 5

minutes to do
Ex2.2.

Figure 1 Figure 2

21

e Counting

* Implementation
 Priority: determined by degree
 Orientation technique: Map undirected edge into directed edge. The direction is
decided by the priority of the endpoint in the vertex-ordering, i.e., u->v if u has a
higher priority than v.

22

e Counting

* Implementation
« Compact Forward (CF) algorithm

Algorithm 1: CF(G)
Input : G : an undirected graph
Output : All triangles in G
G + Orientation graph of GG based on degree-order;
for each vertex u € G do
for each out-going neighbor v do

T+ Nt(u)NnN*t(v);

for each vertex w € T" do

L Output the triangle (u, v, w);

(=T =L B U SR

23

e Counting

* Exercise
 List all the triangles in the example graph G

(i@% jo

24

e Counting

« Complexity analysis
We need to check common neighbors in the adj list.
« If the adj list is sorted, the time complexity of CF algorithm is:

0(Zuryer deg® W) * deg* (v)
« If the adj list is sorted, the time complexity of CF algorithm is:

0(Z (uvyer deg (W) + deg* (1))

25

e Counting

« Complexity analysis
« Suppose a hash table has been built for each vertex based on the out-going
neighbors in the oriented graph. We can choose the vertex with larger number of
neighbors as the hash table for intersection with O (min(deg*(u), deg™ (v))) cost.

The complexity of CF algorithm: 0(X,, ,yez min(deg™(u), deg*(v))) =
O0(Z@wvyer min(deg(w),deg(v))) = 0(a -m) = 0(m*)

26 UN.]TZ

e Counting

« Complexity analysis
« Build a hash table for each vertex requires large space cost for big graphs. We can
build a hash table on the fly.

The complexity of CF algorithm: O(Z(u,v)EE’ deg* (v)) = O(Z(u,v)EE’ deg(v)) =
O(Z(u,U)EE mln(deg(u)) deg(v))) = 0(6{ . m) = O(ml-s)

e Counting

- Exercise
» Load the graph via class ‘SimpleGraph’ in tutorial_6.py
« Implement CF algorithm to list all the triangles in the graph G

Q %f\ } Now, you have 15

4 minutes to do
‘ % @%)D ExI2.5.

28 UN.TZ

Q&A

